Sparse-View Spectral CT Reconstruction and Material Decomposition Based on Multi-Channel SGM

被引:3
|
作者
Liu, Yuedong [1 ,2 ]
Zhou, Xuan [1 ,2 ]
Wei, Cunfeng [1 ,2 ,3 ]
Xu, Qiong [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing Engn Res Ctr Radiog Tech & Equipment, Beijing 100049, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nucl Sci & Technol, Beijing 100049, Peoples R China
[3] Jinan Lab Appl Nucl Sci, Jinan 250131, Peoples R China
基金
中国国家自然科学基金;
关键词
Computed tomography; Image reconstruction; Data models; Iterative methods; Training; Organisms; Correlation; Sparse-view CT reconstruction; spectral CT; material decomposition; score-based generative model; contrast agent quantification; PHOTON-COUNTING CT; IMAGE-RECONSTRUCTION; NETWORK;
D O I
10.1109/TMI.2024.3413085
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In medical applications, the diffusion of contrast agents in tissue can reflect the physiological function of organisms, so it is valuable to quantify the distribution and content of contrast agents in the body over a period. Spectral CT has the advantages of multi-energy projection acquisition and material decomposition, which can quantify K-edge contrast agents. However, multiple repetitive spectral CT scans can cause excessive radiation doses. Sparse-view scanning is commonly used to reduce dose and scan time, but its reconstructed images are usually accompanied by streaking artifacts, which leads to inaccurate quantification of the contrast agents. To solve this problem, an unsupervised sparse-view spectral CT reconstruction and material decomposition algorithm based on the multi-channel score-based generative model (SGM) is proposed in this paper. First, multi-energy images and tissue images are used as multi-channel input data for SGM training. Secondly, the organism is multiply scanned in sparse views, and the trained SGM is utilized to generate multi-energy images and tissue images driven by sparse-view projections. After that, a material decomposition algorithm using tissue images generated by SGM as prior images for solving contrast agent images is established. Finally, the distribution and content of the contrast agents are obtained. The comparison and evaluation of this method are given in this paper, and a series of mouse scanning experiments are carried out to verify the effectiveness of the method.
引用
收藏
页码:3425 / 3435
页数:11
相关论文
共 50 条
  • [1] Sparse-View Spectral CT Reconstruction Based on Tensor Decomposition and Total Generalized Variation
    Li, Xuru
    Wang, Kun
    Xue, Xiaoqin
    Li, Fuzhong
    ELECTRONICS, 2024, 13 (10)
  • [2] Sparse-View Projection Spectral CT Reconstruction via HAMEN
    Qi Junyu
    Shi Zaifeng
    Kong Fanning
    Ge Tianhao
    Zhang Lili
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)
  • [3] Sparse-view CT reconstruction with improved GoogLeNet
    Xie, Shipeng
    Zhang, Pengcheng
    Luo, Limin
    Li, Haibo
    MEDICAL IMAGING 2018: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2018, 10578
  • [4] Sparse-View Spectral CT Reconstruction Using Spectral Patch-Based Low-Rank Penalty
    Kim, Kyungsang
    Ye, Jong Chul
    Worstell, William
    Ouyang, Jinsong
    Rakvongthai, Yothin
    El Fakhri, Georges
    Li, Quanzheng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (03) : 748 - 760
  • [5] Accelerated model-based iterative reconstruction strategy for sparse-view photoacoustic tomography aided by multi-channel autoencoder priors
    Song, Xianlin
    Zhong, Wenhua
    Li, Zilong
    Peng, Shuchong
    Zhang, Hongyu
    Wang, Guijun
    Dong, Jiaqing
    Liu, Xuan
    Xu, Xiaoling
    Liu, Qiegen
    JOURNAL OF BIOPHOTONICS, 2024, 17 (01)
  • [6] A Transformer-Based Iterative Reconstruction Model for Sparse-View CT Reconstruction
    Xia, Wenjun
    Yang, Ziyuan
    Zhou, Qizheng
    Lu, Zexin
    Wang, Zhongxian
    Zhang, Yi
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VI, 2022, 13436 : 790 - 800
  • [7] SPARSE-VIEW CT RECONSTRUCTION VIA CONVOLUTIONAL SPARSE CODING
    Bao, Peng
    Xia, Wenjun
    Yang, Kang
    Zhou, Jiliu
    Zhang, Yi
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1446 - 1449
  • [8] MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer
    Li, Yu
    Sun, XueQin
    Wang, SuKai
    Li, XuRu
    Qin, YingWei
    Pan, JinXiao
    Chen, Ping
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (09):
  • [9] Sparse-view CT reconstruction based on gradient directional total variation
    Qu, Zhaoyan
    Zhao, Xiaojie
    Pan, Jinxiao
    Chen, Ping
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2019, 30 (05)
  • [10] Sparse-view CT reconstruction based on multi-level wavelet convolution neural network
    Lee, Minjae
    Kim, Hyemi
    Kim, Hee-Joung
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 80 : 352 - 362