MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer

被引:12
|
作者
Li, Yu [1 ,2 ]
Sun, XueQin [1 ,2 ]
Wang, SuKai [1 ,2 ]
Li, XuRu [1 ,2 ]
Qin, YingWei [1 ,2 ]
Pan, JinXiao [1 ,2 ]
Chen, Ping [1 ,2 ]
机构
[1] North Univ China, Dept Informat & Commun Engn, Taiyuan, Peoples R China
[2] North Univ China, State Key Lab Elect Testing Technol, Taiyuan, Peoples R China
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2023年 / 68卷 / 09期
基金
中国国家自然科学基金;
关键词
Computed tomography (CT); multi-domain optimization; sparse-view CT (SVCT) reconstruction; swin transformer; LOW-DOSE CT; IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY; NEURAL-NETWORK; FEW-VIEW; NET; MANIFOLD;
D O I
10.1088/1361-6560/acc2ab
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective.Sparse-view computed tomography (SVCT), which can reduce the radiation doses administered to patients and hasten data acquisition, has become an area of particular interest to researchers. Most existing deep learning-based image reconstruction methods are based on convolutional neural networks (CNNs). Due to the locality of convolution and continuous sampling operations, existing approaches cannot fully model global context feature dependencies, which makes the CNN-based approaches less efficient in modeling the computed tomography (CT) images with various structural information. Approach. To overcome the above challenges, this paper develops a novel multi-domain optimization network based on convolution and swin transformer (MDST). MDST uses swin transformer block as the main building block in both projection (residual) domain and image (residual) domain sub-networks, which models global and local features of the projections and reconstructed images. MDST consists of two modules for initial reconstruction and residual-assisted reconstruction, respectively. The sparse sinogram is first expanded in the initial reconstruction module with a projection domain sub-network. Then, the sparse-view artifacts are effectively suppressed by an image domain sub-network. Finally, the residual assisted reconstruction module to correct the inconsistency of the initial reconstruction, further preserving image details. Main results. Extensive experiments on CT lymph node datasets and real walnut datasets show that MDST can effectively alleviate the loss of fine details caused by information attenuation and improve the reconstruction quality of medical images. Significance. MDST network is robust and can effectively reconstruct images with different noise level projections. Different from the current prevalent CNN-based networks, MDST uses transformer as the main backbone, which proves the potential of transformer in SVCT reconstruction.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Multi-domain integrative Swin transformer network for sparse-view tomographic reconstruction
    Pan, Jiayi
    Zhang, Heye
    Wu, Weifei
    Gao, Zhifan
    Wu, Weiwen
    PATTERNS, 2022, 3 (06):
  • [2] Dual Domain Swin Transformer-based Reconstruction method for Sparse-View Computed Tomography
    Van der Rauwelaert, J.
    Bossuyt, C.
    Sijbers, J.
    e-Journal of Nondestructive Testing, 2025, 30 (02):
  • [3] DuDoTrans: Dual-Domain Transformer for Sparse-View CT Reconstruction
    Wang, Ce
    Shang, Kun
    Zhang, Haimiao
    Li, Qian
    Zhou, S. Kevin
    MACHINE LEARNING FOR MEDICAL IMAGE RECONSTRUCTION (MLMIR 2022), 2022, 13587 : 84 - 94
  • [4] TD-STrans: Tri-domain sparse-view CT reconstruction based on sparse transformer
    Li, Yu
    Sun, Xueqin
    Wang, Sukai
    Guo, Lina
    Qin, Yingwei
    Pan, Jinxiao
    Chen, Ping
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 260
  • [5] A Transformer-Based Iterative Reconstruction Model for Sparse-View CT Reconstruction
    Xia, Wenjun
    Yang, Ziyuan
    Zhou, Qizheng
    Lu, Zexin
    Wang, Zhongxian
    Zhang, Yi
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VI, 2022, 13436 : 790 - 800
  • [6] Sparse-view CT reconstruction based on multi-level wavelet convolution neural network
    Lee, Minjae
    Kim, Hyemi
    Kim, Hee-Joung
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 80 : 352 - 362
  • [7] ADMM-TransNet: ADMM-Based Sparse-View CT Reconstruction Method Combining Convolution and Transformer Network
    Wang, Sukai
    Sun, Xueqin
    Li, Yu
    Wei, Zhiqing
    Guo, Lina
    Li, Yihong
    Chen, Ping
    Li, Xuan
    TOMOGRAPHY, 2025, 11 (03)
  • [8] Dual-domain sparse-view CT reconstruction with Transformers
    Shi, Changrong
    Xiao, Yongshun
    Chen, Zhiqiang
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2022, 101 : 71 - 78
  • [9] Generative Modeling in Sinogram Domain for Sparse-View CT Reconstruction
    Guan, Bing
    Yang, Cailian
    Zhang, Liu
    Niu, Shanzhou
    Zhang, Minghui
    Wang, Yuhao
    Wu, Weiwen
    Liu, Qiegen
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2024, 8 (02) : 195 - 207
  • [10] Dual-Domain Reconstruction Network for Sparse-View CT
    Zhang, Yi
    Chen, Hu
    Xia, Wenjun
    Chen, Yang
    Liu, Baodong
    Liu, Yan
    Sun, Huaiqiang
    Zhou, Jiliu
    DEVELOPMENTS IN X-RAY TOMOGRAPHY XIII, 2021, 11840