Cascaded Frequency-Encoded Multi-Scale Neural Fields for Sparse-View CT Reconstruction

被引:0
|
作者
Wu, Jia [1 ,2 ]
Lin, Jinzhao [1 ]
Pang, Yu [3 ]
Jiang, Xiaoming [4 ]
Li, Xinwei [4 ]
Meng, Hongying [5 ]
Luo, Yamei [6 ]
Yang, Lu [7 ]
Li, Zhangyong [4 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Southwest Med Univ, Sch Med Informat & Engn, Luzhou 646000, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Sch Optoelect Engn, Chongqing 400065, Peoples R China
[4] Chongqing Univ Posts & Telecommun, Chongqing Engn Res Ctr Med Elect & Informat Techno, Chongqing 400065, Peoples R China
[5] Brunel Univ London, Dept Elect & Elect Engn, Uxbridge UB8 3PH, England
[6] Southwest Med Univ, Sch Med Informat & Engn, Luzhou 646000, Peoples R China
[7] Southwest Med Univ, Affiliated Hosp, Dept Radiol, Luzhou 646000, Peoples R China
基金
中国国家自然科学基金;
关键词
Image reconstruction; Computed tomography; Estimation; Iterative methods; Optimization; Electronic mail; Refining; Neural networks; Image quality; Telecommunications; image reconstruction; iterative unfolding network; neural fields representation; sparse-view; NETWORK;
D O I
10.1109/TCI.2025.3536078
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse-view computed tomography aims to reduce radiation exposure but often suffers from degraded image quality due to insufficient projection data. Traditional methods struggle to balance data fidelity and detail preservation, particularly in high-frequency regions. In this paper, we propose a Cascaded Frequency-Encoded Multi-Scale Neural Fields (Ca-FMNF) framework. We reformulate the reconstruction task as refining high-frequency residuals upon a high-quality low-frequency foundation. It integrates a pre-trained iterative unfolding network for initial low-frequency estimation with a FMNF to represent high-frequency residuals. The FMNF parameters are optimized by minimizing the discrepancy between the measured projections and those estimated through the imaging forward model, thereby refining the residuals based on the initial estimation. This dual-stage strategy enhances data consistency and preserves fine structures. The extensive experiments on simulated and clinical datasets demonstrate that our method achieves the optimal results in both quantitative metrics and visual quality, effectively reducing artifacts and preserving structural details.
引用
收藏
页码:237 / 250
页数:14
相关论文
共 50 条
  • [21] Sparse-View CT Reconstruction via Robust and Multi-channels Autoencoding Priors
    Zhang, Minghui
    Zhang, Fengqin
    Liu, Qiegen
    Liang, Dong
    ISICDM 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON IMAGE COMPUTING AND DIGITAL MEDICINE, 2018, : 55 - 59
  • [22] Sparse-View CT Reconstruction via Generative Adversarial Networks
    Zhao, Zhongwei
    Sun, Yuewen
    Cong, Peng
    2018 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE PROCEEDINGS (NSS/MIC), 2018,
  • [23] Dual-domain sparse-view CT reconstruction with Transformers
    Shi, Changrong
    Xiao, Yongshun
    Chen, Zhiqiang
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2022, 101 : 71 - 78
  • [24] Sparse-View Projection Spectral CT Reconstruction via HAMEN
    Qi Junyu
    Shi Zaifeng
    Kong Fanning
    Ge Tianhao
    Zhang Lili
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)
  • [25] Generative Modeling in Sinogram Domain for Sparse-View CT Reconstruction
    Guan, Bing
    Yang, Cailian
    Zhang, Liu
    Niu, Shanzhou
    Zhang, Minghui
    Wang, Yuhao
    Wu, Weiwen
    Liu, Qiegen
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2024, 8 (02) : 195 - 207
  • [26] Multi-Pose Fusion for Sparse-View CT Reconstruction Using Consensus Equilibrium
    Yang, Diyu
    Kemp, Craig A. J.
    Buzzard, Gregery T.
    Bouman, Charles A.
    2022 58TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2022,
  • [27] Generalized deep iterative reconstruction for sparse-view CT imaging
    Su, Ting
    Cui, Zhuoxu
    Yang, Jiecheng
    Zhang, Yunxin
    Liu, Jian
    Zhu, Jiongtao
    Gao, Xiang
    Fang, Shibo
    Zheng, Hairong
    Ge, Yongshuai
    Liang, Dong
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (02):
  • [28] Dual-Domain Reconstruction Network for Sparse-View CT
    Zhang, Yi
    Chen, Hu
    Xia, Wenjun
    Chen, Yang
    Liu, Baodong
    Liu, Yan
    Sun, Huaiqiang
    Zhou, Jiliu
    DEVELOPMENTS IN X-RAY TOMOGRAPHY XIII, 2021, 11840
  • [29] Dual-domain sparse-view CT reconstruction with Transformers
    Shi, Changrong
    Xiao, Yongshun
    Chen, Zhiqiang
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2022, 101 : 1 - 7
  • [30] A Transformer-Based Iterative Reconstruction Model for Sparse-View CT Reconstruction
    Xia, Wenjun
    Yang, Ziyuan
    Zhou, Qizheng
    Lu, Zexin
    Wang, Zhongxian
    Zhang, Yi
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VI, 2022, 13436 : 790 - 800