Cascaded Frequency-Encoded Multi-Scale Neural Fields for Sparse-View CT Reconstruction

被引:0
|
作者
Wu, Jia [1 ,2 ]
Lin, Jinzhao [1 ]
Pang, Yu [3 ]
Jiang, Xiaoming [4 ]
Li, Xinwei [4 ]
Meng, Hongying [5 ]
Luo, Yamei [6 ]
Yang, Lu [7 ]
Li, Zhangyong [4 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Southwest Med Univ, Sch Med Informat & Engn, Luzhou 646000, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Sch Optoelect Engn, Chongqing 400065, Peoples R China
[4] Chongqing Univ Posts & Telecommun, Chongqing Engn Res Ctr Med Elect & Informat Techno, Chongqing 400065, Peoples R China
[5] Brunel Univ London, Dept Elect & Elect Engn, Uxbridge UB8 3PH, England
[6] Southwest Med Univ, Sch Med Informat & Engn, Luzhou 646000, Peoples R China
[7] Southwest Med Univ, Affiliated Hosp, Dept Radiol, Luzhou 646000, Peoples R China
基金
中国国家自然科学基金;
关键词
Image reconstruction; Computed tomography; Estimation; Iterative methods; Optimization; Electronic mail; Refining; Neural networks; Image quality; Telecommunications; image reconstruction; iterative unfolding network; neural fields representation; sparse-view; NETWORK;
D O I
10.1109/TCI.2025.3536078
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse-view computed tomography aims to reduce radiation exposure but often suffers from degraded image quality due to insufficient projection data. Traditional methods struggle to balance data fidelity and detail preservation, particularly in high-frequency regions. In this paper, we propose a Cascaded Frequency-Encoded Multi-Scale Neural Fields (Ca-FMNF) framework. We reformulate the reconstruction task as refining high-frequency residuals upon a high-quality low-frequency foundation. It integrates a pre-trained iterative unfolding network for initial low-frequency estimation with a FMNF to represent high-frequency residuals. The FMNF parameters are optimized by minimizing the discrepancy between the measured projections and those estimated through the imaging forward model, thereby refining the residuals based on the initial estimation. This dual-stage strategy enhances data consistency and preserves fine structures. The extensive experiments on simulated and clinical datasets demonstrate that our method achieves the optimal results in both quantitative metrics and visual quality, effectively reducing artifacts and preserving structural details.
引用
收藏
页码:237 / 250
页数:14
相关论文
共 50 条
  • [11] COMPARISON OF SPARSE-VIEW CT IMAGE RECONSTRUCTION ALGORITHMS
    Zhang, Shu
    Xia, Youshen
    Zou, Changzhong
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2016, : 385 - 390
  • [12] Sparse-View CT Reconstruction Using Wasserstein GANs
    Thaler, Franz
    Hammernik, Kerstin
    Payer, Christian
    Urschler, Martin
    Stern, Darko
    MACHINE LEARNING FOR MEDICAL IMAGE RECONSTRUCTION, MLMIR 2018, 2018, 11074 : 75 - 82
  • [13] DEEP BACK PROJECTION FOR SPARSE-VIEW CT RECONSTRUCTION
    Ye, Dong Hye
    Buzzard, Gregery T.
    Ruby, Max
    Bouman, Charles A.
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1 - 5
  • [14] Implicit Neural Deformation for Sparse-View Face Reconstruction
    Li, Moran
    Huang, Haibin
    Zheng, Yi
    Li, Mengtian
    Sang, Nong
    Ma, Chongyang
    COMPUTER GRAPHICS FORUM, 2022, 41 (07) : 601 - 610
  • [15] DE-NAF: decoupled neural attenuation fields for sparse-view CBCT reconstruction
    Zhao, Tianning
    Ding, Guoping
    Liu, Zhenyang
    Hu, Peng
    Wei, Hangping
    Tan, Min
    Ding, Jiajun
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (01)
  • [16] Beam Hardening Correction for Sparse-View CT Reconstruction
    Liu, Wenlei
    Rong, Junyan
    Gao, Peng
    Liao, Qimei
    Lu, HongBing
    MEDICAL IMAGING 2015: IMAGE PROCESSING, 2015, 9413
  • [17] Learning Projection Views for Sparse-View CT Reconstruction
    Yang, Liutao
    Ge, Rongjun
    Feng, Shichang
    Zhang, Daoqiang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2645 - 2653
  • [18] SPARSE-VIEW CT RECONSTRUCTION BASED ON MOJETTE TRANSFROM USING CONVOLUTIONAL NEURAL NETWORK
    Qu, Zhiping
    Jiang, Min
    Sun, Yi
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1664 - 1668
  • [19] A Deep-Learning Neural Network Based Reconstruction Algorithm for Sparse-View CT
    Herrera, I.
    Mandke, P.
    Feng, W.
    Cao, G.
    MEDICAL PHYSICS, 2020, 47 (06) : E508 - E508
  • [20] Neural architecture search with Deep Radon Prior for sparse-view CT image reconstruction
    Fu, Jintao
    Cong, Peng
    Xu, Shuo
    Chang, Jiahao
    Liu, Ximing
    Sun, Yuewen
    MEDICAL PHYSICS, 2025,