Sparse-View CT Reconstruction Using Wasserstein GANs

被引:13
|
作者
Thaler, Franz [1 ]
Hammernik, Kerstin [1 ]
Payer, Christian [1 ]
Urschler, Martin [2 ]
Stern, Darko [1 ,2 ]
机构
[1] Graz Univ Technol, Inst Comp Graph & Vis, Graz, Austria
[2] Ludwig Boltzmann Inst Clin Forens Imaging, Graz, Austria
基金
奥地利科学基金会;
关键词
Computed tomography; Sparse-view reconstruction; Convolutional neural networks; Generative adversarial networks; L1; loss; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1007/978-3-030-00129-2_9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a 2D computed tomography (CT) slice image reconstruction method from a limited number of projection images using Wasserstein generative adversarial networks (wGAN). Our wGAN optimizes the 2D CT image reconstruction by utilizing an adversarial loss to improve the perceived image quality as well as an L1 content loss to enforce structural similarity to the target image. We evaluate our wGANs using different weight factors between the two loss functions and compare to a convolutional neural network (CNN) optimized on L1 and the Filtered Backprojection (FBP) method. The evaluation shows that the results generated by the machine learning based approaches are substantially better than those from the FBP method. In contrast to the blurrier looking images generated by the CNNs trained on L1, the wGANs results appear sharper and seem to contain more structural information. We show that a certain amount of projection data is needed to get a correct representation of the anatomical correspondences.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [1] Sparse-view CT reconstruction with improved GoogLeNet
    Xie, Shipeng
    Zhang, Pengcheng
    Luo, Limin
    Li, Haibo
    MEDICAL IMAGING 2018: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2018, 10578
  • [2] SPARSE-VIEW CT RECONSTRUCTION VIA CONVOLUTIONAL SPARSE CODING
    Bao, Peng
    Xia, Wenjun
    Yang, Kang
    Zhou, Jiliu
    Zhang, Yi
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1446 - 1449
  • [3] Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruction
    Xie, Shipeng
    Zheng, Xinyu
    Chen, Yang
    Xie, Lizhe
    Liu, Jin
    Zhang, Yudong
    Yan, Jingjie
    Zhu, Hu
    Hu, Yining
    SCIENTIFIC REPORTS, 2018, 8
  • [4] Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruction
    Shipeng Xie
    Xinyu Zheng
    Yang Chen
    Lizhe Xie
    Jin Liu
    Yudong Zhang
    Jingjie Yan
    Hu Zhu
    Yining Hu
    Scientific Reports, 8
  • [5] DEEP BACK PROJECTION FOR SPARSE-VIEW CT RECONSTRUCTION
    Ye, Dong Hye
    Buzzard, Gregery T.
    Ruby, Max
    Bouman, Charles A.
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1 - 5
  • [6] COMPARISON OF SPARSE-VIEW CT IMAGE RECONSTRUCTION ALGORITHMS
    Zhang, Shu
    Xia, Youshen
    Zou, Changzhong
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2016, : 385 - 390
  • [7] Beam Hardening Correction for Sparse-View CT Reconstruction
    Liu, Wenlei
    Rong, Junyan
    Gao, Peng
    Liao, Qimei
    Lu, HongBing
    MEDICAL IMAGING 2015: IMAGE PROCESSING, 2015, 9413
  • [8] Learning Projection Views for Sparse-View CT Reconstruction
    Yang, Liutao
    Ge, Rongjun
    Feng, Shichang
    Zhang, Daoqiang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2645 - 2653
  • [9] Sparse-View CT Reconstruction Using Curvelet and TV-Based Regularization
    Yazdanpanah, Ali Pour
    Regentova, Emma E.
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016), 2016, 9730 : 672 - 677
  • [10] Noise-robust Mojette reconstruction using sparse-view CT projections
    Jiang, Min
    Qu, Zhiping
    Sun, Yi
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2019, 27 (02) : 237 - 256