Artificial intelligence-enhanced electrocardiography improves the detection of coronary artery disease

被引:1
|
作者
Yeh, Chi-Hsiao [1 ,2 ,3 ]
Tsai, Tsung-Hsien [4 ]
Chen, Chun-Hung [4 ]
Chou, Yi-Ju [5 ]
Mao, Chun-Tai [2 ,3 ,6 ]
Su, Tzu-Pei [3 ,7 ]
Yang, Ning-, I [2 ,3 ,6 ]
Lai, Chi-Chun [2 ,3 ,8 ]
Chen, Chien-Tzung [3 ,9 ]
Sytwu, Huey-Kang [10 ,11 ]
Tsai, Ting-Fen [5 ,12 ,13 ,14 ]
机构
[1] Chang Gung Mem Hosp, Dept Thorac & Cardiovasc Surg, Linkou 333, Taoyuan, Taiwan
[2] Chang Gung Mem Hosp, Community Med Res Ctr, Keelung 204, Taiwan
[3] Chang Gung Univ, Coll Med, Taoyuan 333, Taiwan
[4] Acer Inc, Adv Tech BU, New Taipei City 221, Taiwan
[5] Natl Hlth Res Inst, Inst Mol & Genom Med, Zhunan 350, Miaoli County, Taiwan
[6] Chang Gung Mem Hosp, Dept Internal Med, Div Cardiol, Keelung 204, Taiwan
[7] Chang Gung Mem Hosp, Dept Nucl Med, Keelung 204, Taiwan
[8] Chang Gung Mem Hosp, Dept Ophthalmol, Keelung 204, Taiwan
[9] Linkou Chang Gung Mem Hosp, Dept Plast & Reconstruct Surg, Taoyuan 333, Taiwan
[10] Natl Inst Infect Dis & Vaccinol, Natl Hlth Res Inst, Taipei 350, Taiwan
[11] Natl Def Med Ctr, Dept & Grad Inst Microbiol & Immunol, Taipei 114, Taiwan
[12] Natl Yang Ming Chiao Tung Univ, Dept Life Sci, Taipei 112, Taiwan
[13] Natl Yang Ming Chiao Tung Univ, Inst Genome Sci, Taipei 112, Taiwan
[14] Natl Yang Ming Chiao Tung Univ, Ctr Hlth Longev & Aging Sci, Taipei 112, Taiwan
关键词
Electrocardiograms; Coronary artery disease; Artificial intelligence; ST-SEGMENT ELEVATION; T-WAVE; DYSFUNCTION; STENOSIS; SEX; ECG; AGE;
D O I
10.1016/j.csbj.2024.12.032
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An AI-assisted algorithm has been developed to improve the detection of significant coronary artery disease (CAD) in high-risk individuals who have normal electrocardiograms (ECGs). This retrospective study analyzed ECGs from patients aged >= 18 years who were undergoing coronary angiography to obtain a clinical diagnosis at Chang Gung Memorial Hospital in Taiwan. Utilizing 12-lead ECG datasets, the algorithm integrated features like time intervals, amplitudes, and slope between peaks, a total of 561 features, with the XGBoost model yielding the best performance. The AI-enhanced ECG algorithm demonstrated high sensitivity (0.82-0.84) when detecting CAD in patients with normal ECGs and gave remarkably high prediction rates among those with abnormal ECGs, both with and without ischemia (92 %-95 % and 80 %-83 %, respectively). Notably, the algorithm's top features, mostly related to slope and amplitude differences, are challenging for clinicians to discern manually. Additionally, the study highlights significant sex differences regarding feature prediction and ranking. Comparatively, the AI-enhanced ECG's detection capability matched that of myocardial perfusion scintigraphy, which is a costly nuclear medicine test, and offers a more accessible alternative for identifying significant CAD, especially among patients with atypical ECG readings.
引用
收藏
页码:278 / 286
页数:9
相关论文
共 50 条
  • [1] Detection of cardiac sarcoidosis with artificial intelligence-enhanced electrocardiography
    De Melo, J. Jose Francisco, Jr.
    Mangold, K. E.
    Debertin, J.
    Attia, Z. I.
    Bois, J. P.
    Rosenbaum, A. N.
    Ezzeddine, O. F.
    Friedman, P. A.
    Kapa, S.
    Deshmukh, A. J.
    Siontis, K. C.
    EUROPEAN JOURNAL OF HEART FAILURE, 2024, 26 : 507 - 508
  • [2] Artificial intelligence-enhanced electrocardiography in cardiovascular disease management
    Siontis, Konstantinos C.
    Noseworthy, Peter A.
    Attia, Zachi I.
    Friedman, Paul A.
    NATURE REVIEWS CARDIOLOGY, 2021, 18 (07) : 465 - 478
  • [3] Artificial intelligence-enhanced electrocardiography in cardiovascular disease management
    Konstantinos C. Siontis
    Peter A. Noseworthy
    Zachi I. Attia
    Paul A. Friedman
    Nature Reviews Cardiology, 2021, 18 : 465 - 478
  • [4] Artificial intelligence-enhanced detection of subclinical coronary artery disease in athletes: diagnostic performance and limitations
    Kuebler, Jens
    Brendel, Jan M.
    Kuestner, Thomas
    Walterspiel, Jonathan
    Hagen, Florian
    Paul, Jean-Francois
    Nikolaou, Konstantin
    Gassenmaier, Sebastian
    Tsiflikas, Ilias
    Burgstahler, Christof
    Greulich, Simon
    Winkelmann, Moritz T.
    Krumm, Patrick
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2024, 40 (12): : 2503 - 2511
  • [5] Artificial intelligence-enhanced electrocardiography analysis as a promising tool for predicting obstructive coronary artery disease in patients with stable angina
    Park, Jiesuck
    Kim, Joonghee
    Kang, Si-Hyuck
    Lee, Jina
    Hong, Youngtaek
    Chang, Hyuk-Jae
    Cho, Youngjin
    Yoon, Yeonyee E.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (04): : 444 - 453
  • [6] Artificial Intelligence-Enhanced Electrocardiography for Prediction of Incident Hypertension
    Sau, Arunashis
    Barker, Joseph
    Pastika, Libor
    Sieliwonczyk, Ewa
    Patlatzoglou, Konstantinos
    Mcgurk, Kathryn A.
    Peters, Nicholas S.
    O'Regan, Declan P.
    Ware, James S.
    Kramer, Daniel B.
    Waks, Jonathan W.
    Ng, Fu Siong
    JAMA CARDIOLOGY, 2025, 10 (03) : 214 - 223
  • [7] Artificial intelligence-enhanced electrocardiography for early assessment of coronavirus disease 2019 severity
    Baek, Yong-Soo
    Jo, Yoonsu
    Lee, Sang-Chul
    Choi, Wonik
    Kim, Dae-Hyeok
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [8] Artificial intelligence-enhanced electrocardiography for early assessment of coronavirus disease 2019 severity
    Yong-Soo Baek
    Yoonsu Jo
    Sang-Chul Lee
    Wonik Choi
    Dae-Hyeok Kim
    Scientific Reports, 13
  • [9] Validation of Noninvasive Detection of Hyperkalemia by Artificial Intelligence-Enhanced Electrocardiography in High Acuity Settings
    Harmon, David M.
    Liu, Kan
    Dugan, Jennifer
    Jentzer, Jacob C.
    Attia, Zachi I.
    Friedman, Paul A.
    Dillon, John J.
    CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2024, 19 (08): : 952 - 958
  • [10] Prediction of mortality, future arrhythmia and cardiovascular disease: an artificial intelligence-enhanced electrocardiography platform
    Sau, A.
    Pastika, L.
    Sieliwonczyk, E.
    Patlatzoglou, K.
    Ribeiro, A. H.
    Mcgurk, K.
    Zeidaabadi, B.
    Zhang, H.
    Macierzanka, K.
    Peters, N. S.
    Ware, J. S.
    Ribeiro, A. L. P.
    Kramer, D. B.
    Waks, J. W.
    Ng, F. S.
    EUROPEAN HEART JOURNAL, 2024, 45