Artificial intelligence-enhanced electrocardiography for early assessment of coronavirus disease 2019 severity

被引:0
|
作者
Yong-Soo Baek
Yoonsu Jo
Sang-Chul Lee
Wonik Choi
Dae-Hyeok Kim
机构
[1] Inha University Hospital,Division of Cardiology, Department of Internal Medicine, Inha University College of Medicine
[2] University of Birmingham,School of Computer Science
[3] DeepCardio Inc.,Department of Computer Engineering
[4] Inha University,Department of Information and Communication Engineering
[5] Inha University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662–0.807) and 0.734 (95% CI: 0.688–0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830–0.835), precision of 0.764 (95% CI: 0.757–0.771), recall of 0.747 (95% CI: 0.741–0.753), and F1 score of 0.747 (95% CI: 0.741–0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156–3.525, p = 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management.
引用
收藏
相关论文
共 50 条
  • [1] Artificial intelligence-enhanced electrocardiography for early assessment of coronavirus disease 2019 severity
    Baek, Yong-Soo
    Jo, Yoonsu
    Lee, Sang-Chul
    Choi, Wonik
    Kim, Dae-Hyeok
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Artificial intelligence-enhanced electrocardiography in cardiovascular disease management
    Siontis, Konstantinos C.
    Noseworthy, Peter A.
    Attia, Zachi I.
    Friedman, Paul A.
    NATURE REVIEWS CARDIOLOGY, 2021, 18 (07) : 465 - 478
  • [3] Artificial intelligence-enhanced electrocardiography in cardiovascular disease management
    Konstantinos C. Siontis
    Peter A. Noseworthy
    Zachi I. Attia
    Paul A. Friedman
    Nature Reviews Cardiology, 2021, 18 : 465 - 478
  • [4] Artificial intelligence-enhanced electrocardiography improves the detection of coronary artery disease
    Yeh, Chi-Hsiao
    Tsai, Tsung-Hsien
    Chen, Chun-Hung
    Chou, Yi-Ju
    Mao, Chun-Tai
    Su, Tzu-Pei
    Yang, Ning-, I
    Lai, Chi-Chun
    Chen, Chien-Tzung
    Sytwu, Huey-Kang
    Tsai, Ting-Fen
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2025, 27 : 278 - 286
  • [5] Assessment of Disease Status and Treatment Response With Artificial Intelligence-Enhanced Electrocardiography in Obstructive Hypertrophic Cardiomyopathy
    Tison, Geoffrey H.
    Siontis, Konstantinos C.
    Abreau, Sean
    Attia, Zachi
    Agarwal, Priyanka
    Balasubramanyam, Aarthi
    Li, Yunfan
    Sehnert, Amy J.
    Edelberg, Jay M.
    Friedman, Paul A.
    Olgin, Jeffrey E.
    Noseworthy, Peter A.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (10) : 1032 - 1034
  • [6] Artificial Intelligence-Enhanced Electrocardiography for Prediction of Incident Hypertension
    Sau, Arunashis
    Barker, Joseph
    Pastika, Libor
    Sieliwonczyk, Ewa
    Patlatzoglou, Konstantinos
    Mcgurk, Kathryn A.
    Peters, Nicholas S.
    O'Regan, Declan P.
    Ware, James S.
    Kramer, Daniel B.
    Waks, Jonathan W.
    Ng, Fu Siong
    JAMA CARDIOLOGY, 2025, 10 (03) : 214 - 223
  • [7] Detection of cardiac sarcoidosis with artificial intelligence-enhanced electrocardiography
    De Melo, J. Jose Francisco, Jr.
    Mangold, K. E.
    Debertin, J.
    Attia, Z. I.
    Bois, J. P.
    Rosenbaum, A. N.
    Ezzeddine, O. F.
    Friedman, P. A.
    Kapa, S.
    Deshmukh, A. J.
    Siontis, K. C.
    EUROPEAN JOURNAL OF HEART FAILURE, 2024, 26 : 507 - 508
  • [8] Prediction of mortality, future arrhythmia and cardiovascular disease: an artificial intelligence-enhanced electrocardiography platform
    Sau, A.
    Pastika, L.
    Sieliwonczyk, E.
    Patlatzoglou, K.
    Ribeiro, A. H.
    Mcgurk, K.
    Zeidaabadi, B.
    Zhang, H.
    Macierzanka, K.
    Peters, N. S.
    Ware, J. S.
    Ribeiro, A. L. P.
    Kramer, D. B.
    Waks, J. W.
    Ng, F. S.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [9] Artificial intelligence-enhanced electrocardiography predicts 10-year risk of atherosclerotic cardiovascular disease
    Zhang, H.
    Sau, A.
    Patlatzoglou, K.
    Pastika, L.
    Sieliwonczyk, E.
    Gurnani, M.
    Zeidaabadi, B.
    Macierzanka, K.
    Barker, J.
    Liang, Y.
    Peters, N. S.
    Kramer, D. B.
    Waks, J. W.
    Ng, F. S.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [10] Artificial intelligence-enhanced electrocardiography derived body mass index as a predictor of future cardiometabolic disease
    Pastika, L.
    Sau, A.
    Patlatzoglou, K.
    Sieliwonczyk, E.
    Ribeiro, A. H.
    Mcgurk, K. A.
    Khan, S.
    Mandic, D.
    Scott, W. R.
    Ware, J. S.
    Peters, N. S.
    Ribeiro, A. L. P.
    Kramer, D.
    Waks, J. W.
    Ng, F. S.
    EUROPEAN HEART JOURNAL, 2024, 45