Artificial intelligence-enhanced electrocardiography improves the detection of coronary artery disease

被引:1
|
作者
Yeh, Chi-Hsiao [1 ,2 ,3 ]
Tsai, Tsung-Hsien [4 ]
Chen, Chun-Hung [4 ]
Chou, Yi-Ju [5 ]
Mao, Chun-Tai [2 ,3 ,6 ]
Su, Tzu-Pei [3 ,7 ]
Yang, Ning-, I [2 ,3 ,6 ]
Lai, Chi-Chun [2 ,3 ,8 ]
Chen, Chien-Tzung [3 ,9 ]
Sytwu, Huey-Kang [10 ,11 ]
Tsai, Ting-Fen [5 ,12 ,13 ,14 ]
机构
[1] Chang Gung Mem Hosp, Dept Thorac & Cardiovasc Surg, Linkou 333, Taoyuan, Taiwan
[2] Chang Gung Mem Hosp, Community Med Res Ctr, Keelung 204, Taiwan
[3] Chang Gung Univ, Coll Med, Taoyuan 333, Taiwan
[4] Acer Inc, Adv Tech BU, New Taipei City 221, Taiwan
[5] Natl Hlth Res Inst, Inst Mol & Genom Med, Zhunan 350, Miaoli County, Taiwan
[6] Chang Gung Mem Hosp, Dept Internal Med, Div Cardiol, Keelung 204, Taiwan
[7] Chang Gung Mem Hosp, Dept Nucl Med, Keelung 204, Taiwan
[8] Chang Gung Mem Hosp, Dept Ophthalmol, Keelung 204, Taiwan
[9] Linkou Chang Gung Mem Hosp, Dept Plast & Reconstruct Surg, Taoyuan 333, Taiwan
[10] Natl Inst Infect Dis & Vaccinol, Natl Hlth Res Inst, Taipei 350, Taiwan
[11] Natl Def Med Ctr, Dept & Grad Inst Microbiol & Immunol, Taipei 114, Taiwan
[12] Natl Yang Ming Chiao Tung Univ, Dept Life Sci, Taipei 112, Taiwan
[13] Natl Yang Ming Chiao Tung Univ, Inst Genome Sci, Taipei 112, Taiwan
[14] Natl Yang Ming Chiao Tung Univ, Ctr Hlth Longev & Aging Sci, Taipei 112, Taiwan
关键词
Electrocardiograms; Coronary artery disease; Artificial intelligence; ST-SEGMENT ELEVATION; T-WAVE; DYSFUNCTION; STENOSIS; SEX; ECG; AGE;
D O I
10.1016/j.csbj.2024.12.032
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An AI-assisted algorithm has been developed to improve the detection of significant coronary artery disease (CAD) in high-risk individuals who have normal electrocardiograms (ECGs). This retrospective study analyzed ECGs from patients aged >= 18 years who were undergoing coronary angiography to obtain a clinical diagnosis at Chang Gung Memorial Hospital in Taiwan. Utilizing 12-lead ECG datasets, the algorithm integrated features like time intervals, amplitudes, and slope between peaks, a total of 561 features, with the XGBoost model yielding the best performance. The AI-enhanced ECG algorithm demonstrated high sensitivity (0.82-0.84) when detecting CAD in patients with normal ECGs and gave remarkably high prediction rates among those with abnormal ECGs, both with and without ischemia (92 %-95 % and 80 %-83 %, respectively). Notably, the algorithm's top features, mostly related to slope and amplitude differences, are challenging for clinicians to discern manually. Additionally, the study highlights significant sex differences regarding feature prediction and ranking. Comparatively, the AI-enhanced ECG's detection capability matched that of myocardial perfusion scintigraphy, which is a costly nuclear medicine test, and offers a more accessible alternative for identifying significant CAD, especially among patients with atypical ECG readings.
引用
收藏
页码:278 / 286
页数:9
相关论文
共 50 条
  • [41] Artificial intelligence-enhanced volumetric laser endomicroscopy improves dysplasia detection in Barrett's esophagus in a randomized cross-over study
    Kahn, Allon
    McKinley, Matthew J.
    Stewart, Molly
    Wang, Kenneth K.
    Iyer, Prasad G.
    Leggett, Cadman L.
    Trindade, Arvind J.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [42] Artificial intelligence-enhanced quantum chemical method with broad applicability
    Zheng, Peikun
    Zubatyuk, Roman
    Wu, Wei
    Isayev, Olexandr
    Dral, Pavlo O.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [43] Global research on artificial intelligence-enhanced human electroencephalogram analysis
    Chen, Xieling
    Tao, Xiaohui
    Wang, Fu Lee
    Xie, Haoran
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (14): : 11295 - 11333
  • [44] Artificial Intelligence-Enhanced Metamaterial Bragg Multilayers for Radiative Cooling
    Ruiz, David Osuna
    Aznarez-Sanado, Maite
    Herrera-Plaza, Pilar
    Beruete, Miguel
    ADVANCED PHOTONICS RESEARCH, 2025, 6 (02):
  • [45] A rapid household mite detection and classification technology based on artificial intelligence-enhanced scanned images
    Lin, Lydia Hsiao-Mei
    Lien, Wei-Cheng
    Cheng, Cindy Yu-Ting
    Lee, You-Cheng
    Lin, Yi-Ting
    Kuo, Chin-Chia
    Lai, Yi-Ting
    Peng, Yan-Tsung
    INTERNET OF THINGS, 2025, 29
  • [46] Artificial intelligence-enhanced volumetric laser endomicroscopy improves dysplasia detection in Barrett’s esophagus in a randomized cross-over study
    Allon Kahn
    Matthew J. McKinley
    Molly Stewart
    Kenneth K. Wang
    Prasad G. Iyer
    Cadman L. Leggett
    Arvind J. Trindade
    Scientific Reports, 12
  • [47] Artificial intelligence-enhanced patient evaluation: bridging art and science
    Oikonomou, Evangelos K.
    Khera, Rohan
    EUROPEAN HEART JOURNAL, 2024,
  • [48] Preparing Radiologists for an Artificial Intelligence-enhanced Future: Tips for Trainees
    Rouzrokh, Pouria
    Clarke, Jamie E.
    Hosseiny, Melina
    Nikpanah, Moozhan
    Mokkarala, Mahati
    RADIOGRAPHICS, 2024, 44 (08)
  • [49] Artificial intelligence-enhanced exposomics: novel insights into cardiovascular health
    Khera, Rohan
    EUROPEAN HEART JOURNAL, 2024, 45 (17) : 1550 - 1552
  • [50] Artificial intelligence-enhanced quantum chemical method with broad applicability
    Peikun Zheng
    Roman Zubatyuk
    Wei Wu
    Olexandr Isayev
    Pavlo O. Dral
    Nature Communications, 12