Artificial intelligence-enhanced electrocardiography improves the detection of coronary artery disease

被引:1
|
作者
Yeh, Chi-Hsiao [1 ,2 ,3 ]
Tsai, Tsung-Hsien [4 ]
Chen, Chun-Hung [4 ]
Chou, Yi-Ju [5 ]
Mao, Chun-Tai [2 ,3 ,6 ]
Su, Tzu-Pei [3 ,7 ]
Yang, Ning-, I [2 ,3 ,6 ]
Lai, Chi-Chun [2 ,3 ,8 ]
Chen, Chien-Tzung [3 ,9 ]
Sytwu, Huey-Kang [10 ,11 ]
Tsai, Ting-Fen [5 ,12 ,13 ,14 ]
机构
[1] Chang Gung Mem Hosp, Dept Thorac & Cardiovasc Surg, Linkou 333, Taoyuan, Taiwan
[2] Chang Gung Mem Hosp, Community Med Res Ctr, Keelung 204, Taiwan
[3] Chang Gung Univ, Coll Med, Taoyuan 333, Taiwan
[4] Acer Inc, Adv Tech BU, New Taipei City 221, Taiwan
[5] Natl Hlth Res Inst, Inst Mol & Genom Med, Zhunan 350, Miaoli County, Taiwan
[6] Chang Gung Mem Hosp, Dept Internal Med, Div Cardiol, Keelung 204, Taiwan
[7] Chang Gung Mem Hosp, Dept Nucl Med, Keelung 204, Taiwan
[8] Chang Gung Mem Hosp, Dept Ophthalmol, Keelung 204, Taiwan
[9] Linkou Chang Gung Mem Hosp, Dept Plast & Reconstruct Surg, Taoyuan 333, Taiwan
[10] Natl Inst Infect Dis & Vaccinol, Natl Hlth Res Inst, Taipei 350, Taiwan
[11] Natl Def Med Ctr, Dept & Grad Inst Microbiol & Immunol, Taipei 114, Taiwan
[12] Natl Yang Ming Chiao Tung Univ, Dept Life Sci, Taipei 112, Taiwan
[13] Natl Yang Ming Chiao Tung Univ, Inst Genome Sci, Taipei 112, Taiwan
[14] Natl Yang Ming Chiao Tung Univ, Ctr Hlth Longev & Aging Sci, Taipei 112, Taiwan
关键词
Electrocardiograms; Coronary artery disease; Artificial intelligence; ST-SEGMENT ELEVATION; T-WAVE; DYSFUNCTION; STENOSIS; SEX; ECG; AGE;
D O I
10.1016/j.csbj.2024.12.032
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An AI-assisted algorithm has been developed to improve the detection of significant coronary artery disease (CAD) in high-risk individuals who have normal electrocardiograms (ECGs). This retrospective study analyzed ECGs from patients aged >= 18 years who were undergoing coronary angiography to obtain a clinical diagnosis at Chang Gung Memorial Hospital in Taiwan. Utilizing 12-lead ECG datasets, the algorithm integrated features like time intervals, amplitudes, and slope between peaks, a total of 561 features, with the XGBoost model yielding the best performance. The AI-enhanced ECG algorithm demonstrated high sensitivity (0.82-0.84) when detecting CAD in patients with normal ECGs and gave remarkably high prediction rates among those with abnormal ECGs, both with and without ischemia (92 %-95 % and 80 %-83 %, respectively). Notably, the algorithm's top features, mostly related to slope and amplitude differences, are challenging for clinicians to discern manually. Additionally, the study highlights significant sex differences regarding feature prediction and ranking. Comparatively, the AI-enhanced ECG's detection capability matched that of myocardial perfusion scintigraphy, which is a costly nuclear medicine test, and offers a more accessible alternative for identifying significant CAD, especially among patients with atypical ECG readings.
引用
收藏
页码:278 / 286
页数:9
相关论文
共 50 条
  • [21] Artificial Intelligence-Enhanced Breast MRI
    Lo Gullo, Roberto
    Marcus, Eric
    Huayanay, Jorge
    Eskreis-Winkler, Sarah
    Thakur, Sunitha
    Teuwen, Jonas
    Pinker, Katja
    INVESTIGATIVE RADIOLOGY, 2024, 59 (03) : 230 - 242
  • [22] A comparison of artificial intelligence-enhanced electrocardiography approaches for the prediction of time to mortality using electrocardiogram images
    Sau, Arunashis
    Zeidaabadi, Boroumand
    Patlatzoglou, Konstantinos
    Pastika, Libor
    Ribeiro, Antonio H.
    Sabino, Ester
    Peters, Nicholas S.
    Ribeiro, Antonio Luiz P.
    Kramer, Daniel B.
    Waks, Jonathan W.
    Ng, Fu Siong
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2025, 6 (02): : 180 - 189
  • [23] ARTIFICIAL INTELLIGENCE-ENHANCED ELECTROCARDIOGRAPHY IDENTIFIES PATIENTS WITH NORMAL EJECTION FRACTION AT RISK OF WORSE OUTCOMES
    Naser, Jwan A.
    Lee, Eunjung
    Lopez-Jimenez, Francisco
    Noseworthy, Peter
    Latif, Omar
    Friedman, Paul A.
    Lin, Grace
    Oh, Jae K.
    Scott, Christopher
    Pislaru, Sorin
    Attia, Zachi Itzhak
    Pellikka, Patricia A.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 2572 - 2572
  • [24] Impact of Artificial Intelligence-Enhanced OCT Software on Percutaneous Coronary Intervention Decisions
    Sibbald, Matthew
    Buccola, Jana
    Mitchell, Haley
    Pinilla, Natalia
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 82 (17) : B104 - B104
  • [25] Artificial intelligence-enhanced electrocardiogram for arrhythmogenic right ventricular cardiomyopathy detection
    Haq, Ikram U.
    Liu, Kan
    Giudicessi, John R.
    Siontis, Konstantinos C.
    Asirvatham, Samuel J.
    Attia, Zachi, I
    Ackerman, Michael J.
    Friedman, Paul A.
    Killu, Ammar M.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (02): : 192 - 194
  • [26] Artificial Intelligence-Enhanced UUV Actuator Control
    Wang, Zhiyu
    Sands, Timothy
    AI, 2023, 4 (01) : 270 - 288
  • [27] Artificial intelligence-enhanced echocardiography in the emergency department
    Stewart, Jonathon E.
    Goudie, Adrian
    Mukherjee, Ashes
    Dwivedi, Girish
    EMERGENCY MEDICINE AUSTRALASIA, 2021, 33 (06) : 1117 - 1120
  • [28] Artificial intelligence-enhanced non-destructive defect detection for civil infrastructure
    Zhang, Yishuang
    Chow, Cheuk Lun
    Lau, Denvid
    AUTOMATION IN CONSTRUCTION, 2025, 171
  • [29] Artificial intelligence-enhanced infrared thermography as a diagnostic tool for thyroid malignancy detection
    Chantasartrassamee, Panpicha
    Ongphiphadhanakul, Boonsong
    Suvikapakornkul, Ronnarat
    Binsirawanich, Panus
    Sriphrapradang, Chutintorn
    ANNALS OF MEDICINE, 2024, 56 (01)
  • [30] Artificial intelligence-enhanced signal detection technique for beyond fifth generation networks
    Daha, Muhammad Yunis
    Rafferty, Joseph
    Ashraf, Muhammad Ikram
    Hadi, Muhammad Usman
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 119