Artificial intelligence-enhanced electrocardiography improves the detection of coronary artery disease

被引:1
|
作者
Yeh, Chi-Hsiao [1 ,2 ,3 ]
Tsai, Tsung-Hsien [4 ]
Chen, Chun-Hung [4 ]
Chou, Yi-Ju [5 ]
Mao, Chun-Tai [2 ,3 ,6 ]
Su, Tzu-Pei [3 ,7 ]
Yang, Ning-, I [2 ,3 ,6 ]
Lai, Chi-Chun [2 ,3 ,8 ]
Chen, Chien-Tzung [3 ,9 ]
Sytwu, Huey-Kang [10 ,11 ]
Tsai, Ting-Fen [5 ,12 ,13 ,14 ]
机构
[1] Chang Gung Mem Hosp, Dept Thorac & Cardiovasc Surg, Linkou 333, Taoyuan, Taiwan
[2] Chang Gung Mem Hosp, Community Med Res Ctr, Keelung 204, Taiwan
[3] Chang Gung Univ, Coll Med, Taoyuan 333, Taiwan
[4] Acer Inc, Adv Tech BU, New Taipei City 221, Taiwan
[5] Natl Hlth Res Inst, Inst Mol & Genom Med, Zhunan 350, Miaoli County, Taiwan
[6] Chang Gung Mem Hosp, Dept Internal Med, Div Cardiol, Keelung 204, Taiwan
[7] Chang Gung Mem Hosp, Dept Nucl Med, Keelung 204, Taiwan
[8] Chang Gung Mem Hosp, Dept Ophthalmol, Keelung 204, Taiwan
[9] Linkou Chang Gung Mem Hosp, Dept Plast & Reconstruct Surg, Taoyuan 333, Taiwan
[10] Natl Inst Infect Dis & Vaccinol, Natl Hlth Res Inst, Taipei 350, Taiwan
[11] Natl Def Med Ctr, Dept & Grad Inst Microbiol & Immunol, Taipei 114, Taiwan
[12] Natl Yang Ming Chiao Tung Univ, Dept Life Sci, Taipei 112, Taiwan
[13] Natl Yang Ming Chiao Tung Univ, Inst Genome Sci, Taipei 112, Taiwan
[14] Natl Yang Ming Chiao Tung Univ, Ctr Hlth Longev & Aging Sci, Taipei 112, Taiwan
关键词
Electrocardiograms; Coronary artery disease; Artificial intelligence; ST-SEGMENT ELEVATION; T-WAVE; DYSFUNCTION; STENOSIS; SEX; ECG; AGE;
D O I
10.1016/j.csbj.2024.12.032
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An AI-assisted algorithm has been developed to improve the detection of significant coronary artery disease (CAD) in high-risk individuals who have normal electrocardiograms (ECGs). This retrospective study analyzed ECGs from patients aged >= 18 years who were undergoing coronary angiography to obtain a clinical diagnosis at Chang Gung Memorial Hospital in Taiwan. Utilizing 12-lead ECG datasets, the algorithm integrated features like time intervals, amplitudes, and slope between peaks, a total of 561 features, with the XGBoost model yielding the best performance. The AI-enhanced ECG algorithm demonstrated high sensitivity (0.82-0.84) when detecting CAD in patients with normal ECGs and gave remarkably high prediction rates among those with abnormal ECGs, both with and without ischemia (92 %-95 % and 80 %-83 %, respectively). Notably, the algorithm's top features, mostly related to slope and amplitude differences, are challenging for clinicians to discern manually. Additionally, the study highlights significant sex differences regarding feature prediction and ranking. Comparatively, the AI-enhanced ECG's detection capability matched that of myocardial perfusion scintigraphy, which is a costly nuclear medicine test, and offers a more accessible alternative for identifying significant CAD, especially among patients with atypical ECG readings.
引用
收藏
页码:278 / 286
页数:9
相关论文
共 50 条
  • [11] Assessment of Disease Status and Treatment Response With Artificial Intelligence-Enhanced Electrocardiography in Obstructive Hypertrophic Cardiomyopathy
    Tison, Geoffrey H.
    Siontis, Konstantinos C.
    Abreau, Sean
    Attia, Zachi
    Agarwal, Priyanka
    Balasubramanyam, Aarthi
    Li, Yunfan
    Sehnert, Amy J.
    Edelberg, Jay M.
    Friedman, Paul A.
    Olgin, Jeffrey E.
    Noseworthy, Peter A.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (10) : 1032 - 1034
  • [12] Artificial intelligence-enhanced electrocardiography predicts 10-year risk of atherosclerotic cardiovascular disease
    Zhang, H.
    Sau, A.
    Patlatzoglou, K.
    Pastika, L.
    Sieliwonczyk, E.
    Gurnani, M.
    Zeidaabadi, B.
    Macierzanka, K.
    Barker, J.
    Liang, Y.
    Peters, N. S.
    Kramer, D. B.
    Waks, J. W.
    Ng, F. S.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [13] Artificial intelligence-enhanced electrocardiography derived body mass index as a predictor of future cardiometabolic disease
    Pastika, L.
    Sau, A.
    Patlatzoglou, K.
    Sieliwonczyk, E.
    Ribeiro, A. H.
    Mcgurk, K. A.
    Khan, S.
    Mandic, D.
    Scott, W. R.
    Ware, J. S.
    Peters, N. S.
    Ribeiro, A. L. P.
    Kramer, D.
    Waks, J. W.
    Ng, F. S.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [14] Artificial intelligence-enhanced electrocardiography for accurate diagnosis and management of cardiovascular diseases
    Muzammil, Muhammad Ali
    Javid, Saman
    Afridi, Azra Khan
    Siddineni, Rupini
    Shahabi, Mariam
    Haseeb, Muhammad
    Fariha, F. N. U.
    Kumar, Satesh
    Zaveri, Sahil
    Nashwan, Abdulqadir J.
    JOURNAL OF ELECTROCARDIOLOGY, 2024, 83 : 30 - 40
  • [15] Artificial intelligence-enhanced electrocardiography derived body mass index as a predictor of future cardiometabolic disease
    Pastika, Libor
    Sau, Arunashis
    Patlatzoglou, Konstantinos
    Sieliwonczyk, Ewa
    Ribeiro, Antonio H.
    McGurk, Kathryn A.
    Khan, Sadia
    Mandic, Danilo
    Scott, William R.
    Ware, James S.
    Peters, Nicholas S.
    Ribeiro, Antonio Luiz P.
    Kramer, Daniel B.
    Waks, Jonathan W.
    Ng, Fu Siong
    NPJ DIGITAL MEDICINE, 2024, 7 (01):
  • [16] Artificial intelligence-enhanced electrocardiography predicts 10-year risk of atherosclerotic cardiovascular disease
    Zhang, H.
    Sau, A.
    Patlatzoglou, K.
    Pastika, L.
    Sieliwonczyk, E.
    Gurnani, M.
    Zeidaabadi, B.
    Macierzanka, K.
    Barker, J.
    Liang, Y.
    Peters, N. S.
    Kramer, D. B.
    Waks, J. W.
    Ng, F. S.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [17] Detection of cardiac sarcoidosis with the artificial intelligence-enhanced electrocardiogram
    de Melo Jr, Jose F.
    Mangold, Kathryn E.
    Debertin, Julia
    Rosenbaum, Andrew
    Bois, John P.
    Attia, Zachi I.
    Friedman, Paul A.
    Deshmukh, Abhishek J.
    Kapa, Suraj
    Cooper, Leslie T.
    Abou Ezzeddine, Omar F.
    Siontis, Konstantinos C.
    HEART RHYTHM, 2025, 22 (03) : 859 - 861
  • [18] Artificial intelligence-enhanced epileptic seizure detection by wearables
    Yu, Shuang
    El Atrache, Rima
    Tang, Jianbin
    Jackson, Michele
    Makarucha, Adam
    Cantley, Sarah
    Sheehan, Theodore
    Vieluf, Solveig
    Zhang, Bo
    Rogers, Jeffrey L.
    Mareels, Iven
    Harrer, Stefan
    Loddenkemper, Tobias
    EPILEPSIA, 2023, 64 (12) : 3213 - 3226
  • [19] Artificial Intelligence-Enhanced Electrocardiogram for the Early Detection of Cardiac
    Grogan, Martha
    Lopez-Jimenez, Francisco
    Cohen-Shelly, Michal
    Dispenzieri, Angela
    Attia, Zachi, I
    Abou Ezzedine, Omar F.
    Lin, Grace
    Kapa, Suraj
    Borgeson, Daniel D.
    Friedman, Paul A.
    Murphree, Dennis H., Jr.
    MAYO CLINIC PROCEEDINGS, 2021, 96 (11) : 2768 - 2778
  • [20] The Future of Surgical Diagnostics: Artificial Intelligence-Enhanced Detection of Ganglion Cells for Hirschsprung Disease
    Demir, Derya
    Ozyoruk, Kutsev Bengisu
    Durusoy, Yasin
    Cinar, Ezgi
    Serin, Gurdeniz
    Basak, Kayhan
    Kose, Emre Cagatay
    Ergin, Malik
    Sezak, Murat
    Keles, G. Evren
    Dervisoglu, Sergulen
    Yakut, Basak Doganavsargil
    Ertas, Yavuz Nuri
    Alaqad, Feras
    Turan, Mehmet
    LABORATORY INVESTIGATION, 2025, 105 (02)