Artificial intelligence-enhanced electrocardiography improves the detection of coronary artery disease

被引:1
|
作者
Yeh, Chi-Hsiao [1 ,2 ,3 ]
Tsai, Tsung-Hsien [4 ]
Chen, Chun-Hung [4 ]
Chou, Yi-Ju [5 ]
Mao, Chun-Tai [2 ,3 ,6 ]
Su, Tzu-Pei [3 ,7 ]
Yang, Ning-, I [2 ,3 ,6 ]
Lai, Chi-Chun [2 ,3 ,8 ]
Chen, Chien-Tzung [3 ,9 ]
Sytwu, Huey-Kang [10 ,11 ]
Tsai, Ting-Fen [5 ,12 ,13 ,14 ]
机构
[1] Chang Gung Mem Hosp, Dept Thorac & Cardiovasc Surg, Linkou 333, Taoyuan, Taiwan
[2] Chang Gung Mem Hosp, Community Med Res Ctr, Keelung 204, Taiwan
[3] Chang Gung Univ, Coll Med, Taoyuan 333, Taiwan
[4] Acer Inc, Adv Tech BU, New Taipei City 221, Taiwan
[5] Natl Hlth Res Inst, Inst Mol & Genom Med, Zhunan 350, Miaoli County, Taiwan
[6] Chang Gung Mem Hosp, Dept Internal Med, Div Cardiol, Keelung 204, Taiwan
[7] Chang Gung Mem Hosp, Dept Nucl Med, Keelung 204, Taiwan
[8] Chang Gung Mem Hosp, Dept Ophthalmol, Keelung 204, Taiwan
[9] Linkou Chang Gung Mem Hosp, Dept Plast & Reconstruct Surg, Taoyuan 333, Taiwan
[10] Natl Inst Infect Dis & Vaccinol, Natl Hlth Res Inst, Taipei 350, Taiwan
[11] Natl Def Med Ctr, Dept & Grad Inst Microbiol & Immunol, Taipei 114, Taiwan
[12] Natl Yang Ming Chiao Tung Univ, Dept Life Sci, Taipei 112, Taiwan
[13] Natl Yang Ming Chiao Tung Univ, Inst Genome Sci, Taipei 112, Taiwan
[14] Natl Yang Ming Chiao Tung Univ, Ctr Hlth Longev & Aging Sci, Taipei 112, Taiwan
关键词
Electrocardiograms; Coronary artery disease; Artificial intelligence; ST-SEGMENT ELEVATION; T-WAVE; DYSFUNCTION; STENOSIS; SEX; ECG; AGE;
D O I
10.1016/j.csbj.2024.12.032
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An AI-assisted algorithm has been developed to improve the detection of significant coronary artery disease (CAD) in high-risk individuals who have normal electrocardiograms (ECGs). This retrospective study analyzed ECGs from patients aged >= 18 years who were undergoing coronary angiography to obtain a clinical diagnosis at Chang Gung Memorial Hospital in Taiwan. Utilizing 12-lead ECG datasets, the algorithm integrated features like time intervals, amplitudes, and slope between peaks, a total of 561 features, with the XGBoost model yielding the best performance. The AI-enhanced ECG algorithm demonstrated high sensitivity (0.82-0.84) when detecting CAD in patients with normal ECGs and gave remarkably high prediction rates among those with abnormal ECGs, both with and without ischemia (92 %-95 % and 80 %-83 %, respectively). Notably, the algorithm's top features, mostly related to slope and amplitude differences, are challenging for clinicians to discern manually. Additionally, the study highlights significant sex differences regarding feature prediction and ranking. Comparatively, the AI-enhanced ECG's detection capability matched that of myocardial perfusion scintigraphy, which is a costly nuclear medicine test, and offers a more accessible alternative for identifying significant CAD, especially among patients with atypical ECG readings.
引用
收藏
页码:278 / 286
页数:9
相关论文
共 50 条
  • [31] Artificial Intelligence-Enhanced Coronary Computed Tomography Angiography for Chronic Coronary Total Occlusion Percutaneous Coronary Intervention
    Carvalho, Pedro E. P.
    Cavalcante, Joao L.
    Cheng, Victor
    Lesser, John
    Brilakis, Emmanouil S.
    Sandoval, Yader
    JACC-CARDIOVASCULAR INTERVENTIONS, 2025, 18 (02) : 260 - 262
  • [32] Transparency in Artificial Intelligence-Enhanced Scholarly Writing: Acknowledgment, Detection, and the Path Forward
    Hassankhani, Amir
    Amoukhteh, Melika
    Gholamrezanezhad, Ali
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2024, 21 (07) : 987 - 987
  • [33] Artificial Intelligence-Enhanced Echocardiography for Systolic Function Assessment
    Zhang, Zisang
    Zhu, Ye
    Liu, Manwei
    Zhang, Ziming
    Zhao, Yang
    Yang, Xin
    Xie, Mingxing
    Zhang, Li
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (10)
  • [34] Artificial intelligence-enhanced electrocardiography for the identification of a sex-related cardiovascular risk continuum: a retrospective cohort study
    Sau, Arunashis
    Sieliwonczyk, Ewa
    Patlatzoglou, Konstantinos
    Pastika, Libor
    Mcgurk, Kathryn A.
    Ribeiro, Antonio H.
    Ribeiro, Antonio Luiz P.
    Ho, Jennifer E.
    Peters, Nicholas S.
    Ware, James S.
    Tayal, Upasana
    Kramer, Daniel B.
    Waks, Jonathan W.
    Ng, Fu Siong
    LANCET DIGITAL HEALTH, 2025, 7 (03): : e184 - e194
  • [35] Advancing Lymphoma Diagnosis with Artificial Intelligence-Enhanced Workflows
    Yi, Hongmei
    Yan, Fang
    Da, Qian
    Wang, Chaofu
    LABORATORY INVESTIGATION, 2024, 104 (03) : S1511 - S1512
  • [36] Automated Echocardiographic Detection of Severe Coronary Artery Disease Using Artificial Intelligence
    Upton, Ross
    Mumith, Angela
    Beqiri, Arian
    Parker, Andrew
    Hawkes, William
    Gao, Shan
    Porumb, Mihaela
    Sarwar, Rizwan
    Marques, Patricia
    Markham, Deborah
    Kenworthy, Jake
    O'Driscoll, Jamie M.
    Hassanali, Neelam
    Groves, Kate
    Dockerill, Cameron
    Woodward, William
    Alsharqi, Maryam
    McCourt, Annabelle
    Wilkes, Edmund H.
    Heitner, Stephen B.
    Yadava, Mrinal
    Stojanovski, David
    Lamata, Pablo
    Woodward, Gary
    Leeson, Paul
    JACC-CARDIOVASCULAR IMAGING, 2022, 15 (05) : 715 - 727
  • [37] ELECTROCARDIOGRAPHY IN CORONARY ARTERY DISEASE
    EVANS, W
    BRITISH MEDICAL JOURNAL, 1954, 2 (4881): : 224 - 224
  • [38] Detection of sessile serrated adenoma using artificial intelligence-enhanced endoscopy: an Asian perspective
    Soo, Joycelyn Mun-Peng
    Koh, Frederick Hong-Xiang
    ANZ JOURNAL OF SURGERY, 2024, 94 (03) : 362 - 365
  • [39] Transparency in Artificial Intelligence-Enhanced Scholarly Writing: Acknowledgment, Detection, and the Path Forward Reply
    Li, Hanzhou
    Moon, John T.
    Trivedi, Hari M.
    Gichoya, Judy W.
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2024, 21 (07) : 988 - 988
  • [40] Fetal electrocardiography and artificial intelligence for prenatal detection of congenital heart disease
    de Vries, Ivar R. R.
    van Laar, Judith O. E. H.
    van der Hout-van der Jagt, Marieke B.
    Clur, Sally-Ann B.
    Vullings, Rik
    ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 2023, 102 (11) : 1511 - 1520