Normalized solutions for a nonlinear Dirac equation

被引:0
|
作者
Zelati, Vittorio Coti [1 ]
Nolasco, Margherita [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat Pura & Appl R Caccioppoli, Via Cintia, I-80126 Naples, NA, Italy
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67010 Laquila, AQ, Italy
关键词
Nonlinear Dirac equation; Critical point theory; Min-Max methods; Normalized solutions; CONCENTRATION-COMPACTNESS PRINCIPLE; STATIONARY STATES; EXISTENCE; CALCULUS;
D O I
10.1016/j.jde.2024.09.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a normalized, stationary solution psi : R-3 -> C-4 with frequency omega > 0 of the nonlinear Dirac equation. The result covers the case in which the nonlinearity is the gradient of a function of the form F(psi) = a|(psi, gamma(0) psi)|(alpha/2) + b |(psi, gamma(1) gamma(2) gamma(3) psi)|(alpha/2) with alpha is an element of (2, 8/3], b >= 0 and a > 0 sufficiently small. Here gamma(i), i = 0, ... , 3 are the 4 x 4 Dirac's matrices. We find the solution as a critical point of a suitable functional restricted to the unit sphere in L-2, and omega turns out to be the corresponding Lagrange multiplier. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license.
引用
收藏
页码:746 / 772
页数:27
相关论文
共 50 条
  • [31] A CLASS OF SOLUTIONS OF DIRAC EQUATION
    SHABAD, AE
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1968, 7 (03): : 418 - &
  • [32] On some solutions of the Dirac equation
    Levai, G
    Mesa, AD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (11): : 2827 - 2832
  • [33] SOLUTIONS OF A FRACTIONAL DIRAC EQUATION
    Muslih, Sami I.
    Agrawal, Om P.
    Baleanu, Dumitru
    PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1011 - 1014
  • [34] Solutions to the nonlinear Schrodinger equation with sequences of initial data converging to a Dirac mass
    Newport, J. P.
    McLaughlin, K. D. T-R
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (23-24) : 2050 - 2056
  • [35] On multiplicity of solutions to nonlinear Dirac equation with local super-quadratic growth
    Liao, Fangfang
    Chen, Tiantian
    ADVANCES IN NONLINEAR ANALYSIS, 2025, 14 (01)
  • [36] Existence and exponential decay of ground-state solutions for a nonlinear Dirac equation
    Zhang, Jian
    Zhang, Wen
    Zhao, Fukun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (05):
  • [37] PROPERTIES OF SOLITARY WAVE SOLUTIONS TO THE NONLINEAR DIRAC-KLEIN-GORDON EQUATION
    OTWINOWSKI, M
    PAUL, R
    TUSZYNSKI, JA
    PHYSICA D, 1986, 18 (1-3): : 382 - 385
  • [38] Normalized solutions for the Klein-Gordon-Dirac system
    Zelati V.C.
    Nolasco M.
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2023, 34 (01): : 101 - 126
  • [39] ON THE EXISTENCE OF WEAK SOLUTIONS FOR A NONLINEAR TIME-DEPENDENT DIRAC-EQUATION
    DIAS, JP
    FIGUEIRA, M
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1989, 113 : 149 - 158
  • [40] Existence and exponential decay of ground-state solutions for a nonlinear Dirac equation
    Jian Zhang
    Wen Zhang
    Fukun Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69