Normalized solutions for a nonlinear Dirac equation

被引:0
|
作者
Zelati, Vittorio Coti [1 ]
Nolasco, Margherita [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat Pura & Appl R Caccioppoli, Via Cintia, I-80126 Naples, NA, Italy
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67010 Laquila, AQ, Italy
关键词
Nonlinear Dirac equation; Critical point theory; Min-Max methods; Normalized solutions; CONCENTRATION-COMPACTNESS PRINCIPLE; STATIONARY STATES; EXISTENCE; CALCULUS;
D O I
10.1016/j.jde.2024.09.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a normalized, stationary solution psi : R-3 -> C-4 with frequency omega > 0 of the nonlinear Dirac equation. The result covers the case in which the nonlinearity is the gradient of a function of the form F(psi) = a|(psi, gamma(0) psi)|(alpha/2) + b |(psi, gamma(1) gamma(2) gamma(3) psi)|(alpha/2) with alpha is an element of (2, 8/3], b >= 0 and a > 0 sufficiently small. Here gamma(i), i = 0, ... , 3 are the 4 x 4 Dirac's matrices. We find the solution as a critical point of a suitable functional restricted to the unit sphere in L-2, and omega turns out to be the corresponding Lagrange multiplier. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license.
引用
收藏
页码:746 / 772
页数:27
相关论文
共 50 条
  • [41] Solutions of nonlinear Dirac equations
    Bartsch, Thomas
    Ding, Yanheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 226 (01) : 210 - 249
  • [42] Normalized solutions to nonautonomous Kirchhoff equation
    Qiu, Xin
    Ou, Zeng Qi
    Lv, Ying
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (03): : 457 - 486
  • [43] Normalized solutions of the Schrodinger equation with potential
    Zhao, Xin
    Zou, Wenming
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (05) : 1632 - 1651
  • [44] Existence of normalized solutions for the Schrodinger equation
    Deng, Shengbing
    Wu, Qiaoran
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (03): : 575 - 585
  • [45] Normalized solutions for nonlinear Schrödinger equation involving potential and Sobolev critical exponent
    Jin, Zhen-Feng
    Zhang, Weimin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 535 (02)
  • [46] NON-RADIAL NORMALIZED SOLUTIONS FOR A NONLINEAR SCHRO spacing diaeresis DINGER EQUATION
    Tong, Zhi-Juan
    Chen, Jianqing
    Wang, Zhi-Qiang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (19) : 1 - 14
  • [47] NORMALIZED SOLUTIONS TO THE MIXED DISPERSION NONLINEAR SCHRODINGER EQUATION IN THE MASS CRITICAL AND SUPERCRITICAL REGIME
    Bonheure, Denis
    Casteras, Jean-Baptiste
    Gou, Tianxiang
    Jeanjean, Louis
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (03) : 2167 - 2212
  • [48] Numerical methods for nonlinear Dirac equation
    Xu, Jian
    Shao, Sihong
    Tang, Huazhong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 245 : 131 - 149
  • [49] On spectral stability of the nonlinear Dirac equation
    Boussaid, Nabile
    Comech, Andrew
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (06) : 1462 - 1524
  • [50] LINEAR AND NONLINEAR DIRAC-EQUATION
    DAVIAU, C
    FOUNDATIONS OF PHYSICS, 1993, 23 (11) : 1431 - 1443