Normalized solutions for a nonlinear Dirac equation

被引:0
|
作者
Zelati, Vittorio Coti [1 ]
Nolasco, Margherita [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat Pura & Appl R Caccioppoli, Via Cintia, I-80126 Naples, NA, Italy
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67010 Laquila, AQ, Italy
关键词
Nonlinear Dirac equation; Critical point theory; Min-Max methods; Normalized solutions; CONCENTRATION-COMPACTNESS PRINCIPLE; STATIONARY STATES; EXISTENCE; CALCULUS;
D O I
10.1016/j.jde.2024.09.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a normalized, stationary solution psi : R-3 -> C-4 with frequency omega > 0 of the nonlinear Dirac equation. The result covers the case in which the nonlinearity is the gradient of a function of the form F(psi) = a|(psi, gamma(0) psi)|(alpha/2) + b |(psi, gamma(1) gamma(2) gamma(3) psi)|(alpha/2) with alpha is an element of (2, 8/3], b >= 0 and a > 0 sufficiently small. Here gamma(i), i = 0, ... , 3 are the 4 x 4 Dirac's matrices. We find the solution as a critical point of a suitable functional restricted to the unit sphere in L-2, and omega turns out to be the corresponding Lagrange multiplier. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license.
引用
收藏
页码:746 / 772
页数:27
相关论文
共 50 条
  • [21] On radial positive normalized solutions of the Nonlinear Schrödinger equation in an annulus
    Jian Liang
    Linjie Song
    Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [22] NORMALIZED SOLUTIONS FOR A NONLINEAR SCHRODINGER EQUATION VIA A FIXED POINT THEOREM
    Tao, Mengfei
    Zhang, Binlin
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2025, 9 (03): : 357 - 371
  • [23] Multiple normalized solutions for a planar gauged nonlinear Schrödinger equation
    Xiao Luo
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [24] Exact stationary solutions of the parametrically driven and damped nonlinear Dirac equation
    Quintero, Niurka R.
    Sanchez-Rey, Bernardo
    CHAOS, 2019, 29 (09)
  • [25] New nonlinear Dirac equation
    Kirchanov, V. S.
    RUSSIAN PHYSICS JOURNAL, 2012, 55 (02) : 242 - 245
  • [26] QUANTIZATION FOR A NONLINEAR DIRAC EQUATION
    Zhu, Miaomiao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (10) : 4533 - 4544
  • [27] Nonlinear Dirac Equation for Graphene
    Gladkikh A.A.
    Malinetskii G.G.
    Mathematical Models and Computer Simulations, 2021, 13 (2) : 301 - 310
  • [28] Nonlinear generalization of the Dirac equation
    Marchuk, Nikolay
    THEORETICAL PHYSICS AND ITS NEW APPLICATIONS, 2014, : 180 - 182
  • [29] New nonlinear Dirac equation
    V. S. Kirchanov
    Russian Physics Journal, 2012, 55 : 242 - 245
  • [30] Iterative solutions to the Dirac equation
    Ciftci, H
    Hall, RL
    Saad, N
    PHYSICAL REVIEW A, 2005, 72 (02):