Iterative solutions to the Dirac equation

被引:65
|
作者
Ciftci, H
Hall, RL
Saad, N
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
[2] Univ Prince Edward Isl, Dept Math & Stat, Charlottetown, PE C1A 4P3, Canada
[3] Gazi Univ, Fen Edebiyat Fak, Fiz Bolumu, TR-06500 Ankara, Turkey
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 02期
关键词
D O I
10.1103/PhysRevA.72.022101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a single particle which is bound by a central potential and obeys the Dirac equation in d dimensions. We first apply the asymptotic iteration method to recover the known exact solutions for the pure Coulomb case. For a screened Coulomb potential and for a Coulomb plus linear potential with linear scalar confinement, the method is used to obtain accurate approximate solutions for both eigenvalues and wave functions.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Extended Wronskian determinant approach and iterative solutions of one-dimensional Dirac equation
    Xu, Y
    Lu, M
    Su, RK
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (06) : 859 - 866
  • [2] Extended Wronskian Determinant Approach and Iterative Solutions of One-Dimensional Dirac Equation
    XU Ying LU Meng SU Ru-Keng Department of Physics
    [J]. Communications in Theoretical Physics, 2004, 41 (06) : 859 - 866
  • [3] A CLASS OF SOLUTIONS OF DIRAC EQUATION
    SHABAD, AE
    [J]. SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1968, 7 (03): : 418 - &
  • [4] On some solutions of the Dirac equation
    Levai, G
    Mesa, AD
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (11): : 2827 - 2832
  • [5] SOLUTIONS OF A FRACTIONAL DIRAC EQUATION
    Muslih, Sami I.
    Agrawal, Om P.
    Baleanu, Dumitru
    [J]. PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1011 - 1014
  • [6] Quasi-exact and asymptotic iterative solutions of Dirac equation in the presence of some scalar potentials
    A Chenaghlou
    S Aghaei
    R Mokhtari
    [J]. Pramana, 2020, 94
  • [7] Quasi-exact and asymptotic iterative solutions of Dirac equation in the presence of some scalar potentials
    Chenaghlou, A.
    Aghaei, S.
    Mokhtari, R.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [8] The explicit solutions to the nonlinear Dirac equation and Dirac-Klein-Gordon equation
    Machihara, Shuji
    Omoso, Takayuki
    [J]. RICERCHE DI MATEMATICA, 2007, 56 (01) : 19 - 30
  • [9] Iterative Solutions of the Schrodinger Equation
    Rawitscher, George
    [J]. FEW-BODY SYSTEMS, 2014, 55 (8-10) : 821 - 824
  • [10] Explicit solutions of the inhomogeneous dirac equation
    Frank Sommen
    Bernard Jancewicz
    [J]. Journal d’Analyse Mathématique, 1997, 71 : 59 - 74