SOLUTIONS OF A FRACTIONAL DIRAC EQUATION

被引:0
|
作者
Muslih, Sami I. [1 ]
Agrawal, Om P. [1 ]
Baleanu, Dumitru
机构
[1] So Illinois Univ, Carbondale, IL 62901 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This is a short version of a paper on the solution of a Fractional Dirac Equation (FDE). In this paper we present two different techniques to obtain a new FDE. The first technique is based on a Fractional Variational Principle (FVP). For completeness and ease in the discussion to follow, we briefly describe the fractional Euler-Lagrange equations, and define a new Lagrangian Density Function to obtain the desired FDE. The second technique we define a new Fractional Klein-Gordon Equation (FKGE) in terms of fractional operators and fractional momenta, and use this equation to obtain the FDE. Our FDE could be of any order We present eigensolutions for the FDE which are very similar to those for the regular Dirac equation. We give only a brief exposition of the topics here. An extended version of this work will be presented elsewhere.
引用
收藏
页码:1011 / 1014
页数:4
相关论文
共 50 条
  • [1] BAGLIKE SOLUTIONS OF A DIRAC-EQUATION WITH FRACTIONAL NONLINEARITY
    MATHIEU, P
    SALY, R
    [J]. PHYSICAL REVIEW D, 1984, 29 (12): : 2879 - 2883
  • [2] Simple solutions of the fractional Dirac equation of order 2/3
    Raspini, A
    [J]. PHYSICA SCRIPTA, 2001, 64 (01) : 20 - 22
  • [3] The Dirac Equation in the Fractional Calculus
    Kirchanov, V. S.
    [J]. RUSSIAN PHYSICS JOURNAL, 2014, 56 (09) : 1102 - 1105
  • [4] The Dirac Equation in the Fractional Calculus
    V. S. Kirchanov
    [J]. Russian Physics Journal, 2014, 56 : 1102 - 1105
  • [5] A fractional Dirac equation and its solution
    Muslih, Sami I.
    Agrawal, Om P.
    Baleanu, Dumitru
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (05)
  • [6] Iterative solutions to the Dirac equation
    Ciftci, H
    Hall, RL
    Saad, N
    [J]. PHYSICAL REVIEW A, 2005, 72 (02):
  • [7] A CLASS OF SOLUTIONS OF DIRAC EQUATION
    SHABAD, AE
    [J]. SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1968, 7 (03): : 418 - &
  • [8] On some solutions of the Dirac equation
    Levai, G
    Mesa, AD
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (11): : 2827 - 2832
  • [9] Solutions of the Fractional Reaction Equation and the Fractional Diffusion Equation
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    [J]. PROCEEDINGS OF THE THIRD UN/ESA/NASA WORKSHOP ON THE INTERNATIONAL HELIOPHYSICAL YEAR 2007 AND BASIC SPACE SCIENCE: NATIONAL ASTRONOMICAL OBSERVATORY OF JAPAN, 2010, : 53 - 62
  • [10] The explicit solutions to the nonlinear Dirac equation and Dirac-Klein-Gordon equation
    Machihara, Shuji
    Omoso, Takayuki
    [J]. RICERCHE DI MATEMATICA, 2007, 56 (01) : 19 - 30