Normalized solutions for a nonlinear Dirac equation

被引:0
|
作者
Zelati, Vittorio Coti [1 ]
Nolasco, Margherita [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat Pura & Appl R Caccioppoli, Via Cintia, I-80126 Naples, NA, Italy
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67010 Laquila, AQ, Italy
关键词
Nonlinear Dirac equation; Critical point theory; Min-Max methods; Normalized solutions; CONCENTRATION-COMPACTNESS PRINCIPLE; STATIONARY STATES; EXISTENCE; CALCULUS;
D O I
10.1016/j.jde.2024.09.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a normalized, stationary solution psi : R-3 -> C-4 with frequency omega > 0 of the nonlinear Dirac equation. The result covers the case in which the nonlinearity is the gradient of a function of the form F(psi) = a|(psi, gamma(0) psi)|(alpha/2) + b |(psi, gamma(1) gamma(2) gamma(3) psi)|(alpha/2) with alpha is an element of (2, 8/3], b >= 0 and a > 0 sufficiently small. Here gamma(i), i = 0, ... , 3 are the 4 x 4 Dirac's matrices. We find the solution as a critical point of a suitable functional restricted to the unit sphere in L-2, and omega turns out to be the corresponding Lagrange multiplier. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license.
引用
收藏
页码:746 / 772
页数:27
相关论文
共 50 条
  • [11] NORMALIZED SOLUTIONS OF SUPERCRITICAL NONLINEAR FRACTIONAL SCHRODINGER EQUATION WITH POTENTIAL
    Peng, Songbai
    Xia, Aliang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (11) : 3707 - 3728
  • [12] Exact Solutions of the Nonlinear Dirac Equation Based on Expansion Method
    Wang, Ying
    Yu, Jicai
    Zhou, Yu
    INTERNATIONAL CONFERENCE ON FRONTIERS OF ENERGY, ENVIRONMENTAL MATERIALS AND CIVIL ENGINEERING (FEEMCE 2013), 2013, : 550 - 555
  • [13] The concentration behavior of ground state solutions for nonlinear Dirac equation
    Ding, Yanheng
    Yu, Yuanyang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
  • [14] On stabilization of small solutions in the nonlinear Dirac equation with a trapping potential
    Cuccagna, Scipio
    Tarulli, Mirko
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (02) : 1332 - 1368
  • [15] Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation
    Machihara, S
    Nakamura, M
    Nakanishi, K
    Ozawa, T
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 219 (01) : 1 - 20
  • [16] Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation
    Machihara, S
    Nakanishi, K
    Ozawa, T
    REVISTA MATEMATICA IBEROAMERICANA, 2003, 19 (01) : 179 - 194
  • [17] Lax Pair and new exact solutions of the nonlinear Dirac equation
    Sabbah, Y. H.
    Al Khawaja, U.
    Vinayagam, P. S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 61 : 167 - 179
  • [18] REDUCTIONS AND EXACT-SOLUTIONS OF A NONLINEAR DIRAC-EQUATION
    FUSHCHICH, VI
    SHTELEN, VM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (01) : 703 - 710
  • [19] EXISTENCE OF STATIONARY SOLUTIONS FOR THE NONLINEAR DIRAC-EQUATION AND THE DIRAC-POISSON SYSTEM
    ESTEBAN, MJ
    SERE, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (11): : 1213 - 1218
  • [20] On radial positive normalized solutions of the Nonlinear Schrödinger equation in an annulus
    Liang, Jian
    Song, Linjie
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (02):