On radial positive normalized solutions of the Nonlinear Schrödinger equation in an annulus

被引:2
|
作者
Liang, Jian [1 ,2 ]
Song, Linjie [1 ,2 ,3 ]
机构
[1] Acad Sinica, AMSS, Inst Math, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Normalized solutions; Orbital stability; Nonlinear Schrodinger equations; Annulus; UNIQUENESS; EXISTENCE;
D O I
10.1007/s00030-023-00917-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the following semilinear elliptic problem: { -Delta u+lambda u=u(p-1),x is an element of T, u>0,u=0on partial derivative T, integral(T)u(2)dx= cwhere T={x is an element of R-N:1<|x|<2}is an annulus inRN,N >= 2,p>1isSobolev-subcritical, searching for conditions (aboutc,Nandp) for the existence of positive radial solutions. We analyze the asymptotic behaviorofcas lambda ->+infinity and lambda ->-lambda 1to get the existence, non-existence and multiplicity of normalized solutions. Additionally, based on the properties of these solutions, we extend the results obtained in Pierotti et al. in CalcVar Partial Differ Equ 56:1-27, 2017. In contrast of the earlier results, a positive radial solution with arbitrarily large mass can be obtained whenN >= 3orifN= 2 and p<6. Our paper also includes the demonstrationof orbital stability/instability results.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On radial positive normalized solutions of the Nonlinear Schrödinger equation in an annulus
    Jian Liang
    Linjie Song
    Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [2] Multiplicity of positive solutions of a nonlinear Schrödinger equation
    Yanheng Ding
    Kazunaga Tanaka
    manuscripta mathematica, 2003, 112 : 109 - 135
  • [3] Multiple positive solutions for a nonlinear Schrödinger equation
    Th. BartschRID="*"
    Z.-Q. WangRID="*"ID="*"Research supported by NATO grant CRG 970179 and DFG grant Gi 30/68-1
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2000, 51 : 366 - 384
  • [4] Multiple normalized solutions for a planar gauged nonlinear Schrödinger equation
    Xiao Luo
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [5] Normalized solutions of nonlinear Schrödinger equations
    Thomas Bartsch
    Sébastien de Valeriola
    Archiv der Mathematik, 2013, 100 : 75 - 83
  • [6] A note on multiple positive solutions for a nonlinear schrödinger equation
    Haitao Y.
    Applied Mathematics-A Journal of Chinese Universities, 2002, 17 (1) : 57 - 63
  • [7] Normalized Solutions to the Fractional Schrödinger Equation with Potential
    Jiabin Zuo
    Chungen Liu
    Calogero Vetro
    Mediterranean Journal of Mathematics, 2023, 20
  • [8] Normalized solutions for nonlinear Schrödinger equations on graphs
    Yang, Yunyan
    Zhao, Liang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 536 (01)
  • [9] Normalized solutions for nonlinear Schrödinger equation involving potential and Sobolev critical exponent
    Jin, Zhen-Feng
    Zhang, Weimin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 535 (02)
  • [10] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025,