On radial positive normalized solutions of the Nonlinear Schrödinger equation in an annulus

被引:2
|
作者
Liang, Jian [1 ,2 ]
Song, Linjie [1 ,2 ,3 ]
机构
[1] Acad Sinica, AMSS, Inst Math, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Normalized solutions; Orbital stability; Nonlinear Schrodinger equations; Annulus; UNIQUENESS; EXISTENCE;
D O I
10.1007/s00030-023-00917-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the following semilinear elliptic problem: { -Delta u+lambda u=u(p-1),x is an element of T, u>0,u=0on partial derivative T, integral(T)u(2)dx= cwhere T={x is an element of R-N:1<|x|<2}is an annulus inRN,N >= 2,p>1isSobolev-subcritical, searching for conditions (aboutc,Nandp) for the existence of positive radial solutions. We analyze the asymptotic behaviorofcas lambda ->+infinity and lambda ->-lambda 1to get the existence, non-existence and multiplicity of normalized solutions. Additionally, based on the properties of these solutions, we extend the results obtained in Pierotti et al. in CalcVar Partial Differ Equ 56:1-27, 2017. In contrast of the earlier results, a positive radial solution with arbitrarily large mass can be obtained whenN >= 3orifN= 2 and p<6. Our paper also includes the demonstrationof orbital stability/instability results.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] NON-RADIAL NORMALIZED SOLUTIONS FOR A NONLINEAR SCHRO spacing diaeresis DINGER EQUATION
    Tong, Zhi-Juan
    Chen, Jianqing
    Wang, Zhi-Qiang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (19) : 1 - 14
  • [22] Positive solutions of a Schrödinger equation with critical nonlinearity
    Mónica Clapp
    Yanheng Ding
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2004, 55 : 592 - 605
  • [23] Normalized bound states for the nonlinear Schrödinger equation in bounded domains
    Dario Pierotti
    Gianmaria Verzini
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [24] Soliton solutions for the nonlocal nonlinear Schrödinger equation
    Xin Huang
    Liming Ling
    The European Physical Journal Plus, 131
  • [25] Singular solutions of the nonlocal nonlinear Schrödinger equation
    Bingwen Lin
    The European Physical Journal Plus, 137
  • [26] Multiplicity of normalized solutions to biharmonic Schrödinger equation with mixed nonlinearities
    Liu, Jianlun
    Zhang, Ziheng
    Guan, Qingle
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024,
  • [27] Normalized solutions to planar Schrödinger equation with exponential critical nonlinearity
    Shuai Mo
    Lixia Wang
    Zeitschrift für angewandte Mathematik und Physik, 2024, 75
  • [28] On Multiwave Solutions of One Nonlinear Schrödinger Equation
    A. N. Volobuev
    Differential Equations, 2021, 57 : 711 - 717
  • [29] Normalized solutions to planar Schrödinger equation with exponential critical nonlinearity
    Mo, Shuai
    Wang, Lixia
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (01):
  • [30] Normalized solutions to a kind of fractional Schrödinger equation with a critical nonlinearity
    Penghui Zhang
    Zhiqing Han
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73