Classifying zircon: A machine-learning approach using zircon geochemistry

被引:0
|
作者
Kong, Jintao [1 ,2 ]
Yu, Hongru [1 ]
Sun, Junyi [1 ]
Zhang, Huan [1 ]
Zhang, Miaomiao [3 ]
Xia, Zhi [4 ]
机构
[1] PetroChina Coalbed Methane Co Ltd, Linfen Branch, Linfen 042300, Peoples R China
[2] Jilin Univ, Coll Earth Sci, Changchun 130000, Peoples R China
[3] Accenture, Melbourne 3000, Australia
[4] South China Normal Univ, Sch Geog, Guangzhou 510630, Peoples R China
关键词
AdaBoost algorithm; Back Propagation Neural Networks; Machine learning; Zircon origin; TRACE-ELEMENT COMPOSITION; HYDROTHERMAL ZIRCON; MAGMATIC ZIRCON; JACK HILLS; GEOCHRONOLOGY;
D O I
10.1016/j.gr.2024.09.010
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study presented a novel, rapid, and accurate method for determining zircon origin via a comprehensive analysis of a dataset containing 27,818 zircon trace element sets. This method integrated back propagation neural networks with the AdaBoost algorithm. The optimal classifier characterized as a linear combination of a two-layer neural network model, comprised 100 base classifiers and 400 hidden neurons. It was rigorously trained over 1000 iterations, which resulted in an unbiased error rate of 8.31%. To facilitate practical application, the classifier was integrated into a macro-enabled Excel spreadsheet. (c) 2024 International Association for Gondwana Research. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:227 / 233
页数:7
相关论文
共 50 条
  • [21] Classifying Unidentified X-Ray Sources in the Chandra Source Catalog Using a Multiwavelength Machine-learning Approach
    Yang, Hui
    Hare, Jeremy
    Kargaltsev, Oleg
    Volkov, Igor
    Chen, Steven
    Rangelov, Blagoy
    ASTROPHYSICAL JOURNAL, 2022, 941 (02):
  • [22] Stable isotope geochemistry of silicon in granitoid zircon
    Guitreau, Martin
    Gannoun, Abdelmouhcine
    Deng, Zhengbin
    Chaussidon, Marc
    Moynier, Frederic
    Barbarin, Bernard
    Marin-Carbonne, Johanna
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2022, 316 : 273 - 294
  • [23] CREATING AND USING MODELS FOR ENGINEERING DESIGN - A MACHINE-LEARNING APPROACH
    YERRAMAREDDY, S
    TCHENG, DK
    LU, SCY
    ASSANIS, DN
    IEEE EXPERT-INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1992, 7 (03): : 52 - 59
  • [24] Machine-learning approach for a sintering process using a neural network
    Shigaki, Ichiro
    Narazaki, Hiroshi
    Production Planning and Control, 1999, 10 (08): : 727 - 734
  • [25] Enhancing the Performance of Photonic Sensor Using Machine-Learning Approach
    Dwivedi, Yogendra Swaroop
    Singh, Rishav
    Sharma, Anuj K.
    Sharma, Ajay Kumar
    IEEE SENSORS JOURNAL, 2023, 23 (03) : 2320 - 2327
  • [26] A machine-learning approach for a sintering process using a neural network
    Shigaki, I
    Narazaki, H
    PRODUCTION PLANNING & CONTROL, 1999, 10 (08) : 727 - 734
  • [27] A Machine-Learning Approach to Time Discrimination
    Hansen, Peter
    2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 2132 - 2133
  • [28] Theory Identity: A Machine-Learning Approach
    Larsen, Kai R.
    Hovorka, Dirk
    West, Jevin
    Birt, James
    Pfaff, James R.
    Chambers, Trevor W.
    Sampedro, Zebula R.
    Zager, Nick
    Vanstone, Bruce
    2014 47TH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), 2014, : 4639 - 4648
  • [29] Classifying binary black holes from Population III stars with the Einstein Telescope: A machine-learning approach
    Santoliquido, Filippo
    Dupletsa, Ulyana
    Tissino, Jacopo
    Branchesi, Marica
    Iacovelli, Francesco
    Iorio, Giuliano
    Mapelli, Michela
    Gerosa, Davide
    Harms, Jan
    Pasquato, Mario
    Astronomy and Astrophysics, 2024, 690
  • [30] New approach of classifying venous congestion in critically ill patients based on unsupervised machine-learning technique
    Wong, Adrian
    Mallat, Jihad
    Fischer, Marc-Olivier
    ANAESTHESIA CRITICAL CARE & PAIN MEDICINE, 2024, 43 (03)