Classifying zircon: A machine-learning approach using zircon geochemistry

被引:0
|
作者
Kong, Jintao [1 ,2 ]
Yu, Hongru [1 ]
Sun, Junyi [1 ]
Zhang, Huan [1 ]
Zhang, Miaomiao [3 ]
Xia, Zhi [4 ]
机构
[1] PetroChina Coalbed Methane Co Ltd, Linfen Branch, Linfen 042300, Peoples R China
[2] Jilin Univ, Coll Earth Sci, Changchun 130000, Peoples R China
[3] Accenture, Melbourne 3000, Australia
[4] South China Normal Univ, Sch Geog, Guangzhou 510630, Peoples R China
关键词
AdaBoost algorithm; Back Propagation Neural Networks; Machine learning; Zircon origin; TRACE-ELEMENT COMPOSITION; HYDROTHERMAL ZIRCON; MAGMATIC ZIRCON; JACK HILLS; GEOCHRONOLOGY;
D O I
10.1016/j.gr.2024.09.010
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study presented a novel, rapid, and accurate method for determining zircon origin via a comprehensive analysis of a dataset containing 27,818 zircon trace element sets. This method integrated back propagation neural networks with the AdaBoost algorithm. The optimal classifier characterized as a linear combination of a two-layer neural network model, comprised 100 base classifiers and 400 hidden neurons. It was rigorously trained over 1000 iterations, which resulted in an unbiased error rate of 8.31%. To facilitate practical application, the classifier was integrated into a macro-enabled Excel spreadsheet. (c) 2024 International Association for Gondwana Research. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:227 / 233
页数:7
相关论文
共 50 条
  • [11] Morphology and geochemistry of zircon: a case study on zircon from the microgranitoid enclaves
    Xiang Wang
    Jean-Robert Kienast
    Science in China Series D: Earth Sciences, 1999, 42 : 544 - 552
  • [12] Predictive utility of symptom measures in classifying anxiety and depression: A machine-learning approach
    Liu, Kevin
    Droncheff, Brian
    Warren, Stacie L.
    PSYCHIATRY RESEARCH, 2022, 312
  • [13] Classifying Swahili Smishing Attacks for Mobile Money Users: A Machine-Learning Approach
    Mambina, Iddi S.
    Ndibwile, Jema D.
    Michael, Kisangiri F.
    IEEE ACCESS, 2022, 10 : 83061 - 83074
  • [14] A machine learning method for distinguishing detrital zircon provenance
    S. H. Zhong
    Y. Liu
    S. Z. Li
    I. N. Bindeman
    P. A. Cawood
    R. Seltmann
    J. H. Niu
    G. H. Guo
    J. Q. Liu
    Contributions to Mineralogy and Petrology, 2023, 178
  • [15] A machine learning method for distinguishing detrital zircon provenance
    Zhong, S. H.
    Liu, Y.
    Li, S. Z.
    Bindeman, I. N.
    Cawood, P. A.
    Seltmann, R.
    Niu, J. H.
    Guo, G. H.
    Liu, J. Q.
    CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2023, 178 (06)
  • [16] OXYGEN-ISOTOPE GEOCHEMISTRY OF ZIRCON
    VALLEY, JW
    CHIARENZELLI, JR
    MCLELLAND, JM
    EARTH AND PLANETARY SCIENCE LETTERS, 1994, 126 (04) : 187 - 206
  • [17] ASSESSMENT OF A MACHINE-LEARNING SOFTWARE FOR CLASSIFYING GROUND COVER
    Jacobi, Charles B.
    Kahl, Samantha S.
    Cox, Robert D.
    Perry, Gad
    SOUTHWESTERN NATURALIST, 2022, 67 (04) : 239 - 243
  • [18] A machine learning approach to discrimination of igneous rocks and ore deposits by zircon trace elements
    Wen, Zi-Hao
    Li, Lin
    Kirkland, Christopher L.
    Li, Sheng-Rong
    Sun, Xiao-Jie
    Lei, Jia-Li
    Xu, Bo
    Hou, Zeng-Qian
    AMERICAN MINERALOGIST, 2024, 109 (06) : 1129 - 1142
  • [19] Classifying kinase conformations using a machine learning approach
    Daniel Ian McSkimming
    Khaled Rasheed
    Natarajan Kannan
    BMC Bioinformatics, 18
  • [20] Classifying kinase conformations using a machine learning approach
    McSkimming, Daniel Ian
    Rasheed, Khaled
    Kannan, Natarajan
    BMC BIOINFORMATICS, 2017, 18