Classifying zircon: A machine-learning approach using zircon geochemistry

被引:0
|
作者
Kong, Jintao [1 ,2 ]
Yu, Hongru [1 ]
Sun, Junyi [1 ]
Zhang, Huan [1 ]
Zhang, Miaomiao [3 ]
Xia, Zhi [4 ]
机构
[1] PetroChina Coalbed Methane Co Ltd, Linfen Branch, Linfen 042300, Peoples R China
[2] Jilin Univ, Coll Earth Sci, Changchun 130000, Peoples R China
[3] Accenture, Melbourne 3000, Australia
[4] South China Normal Univ, Sch Geog, Guangzhou 510630, Peoples R China
关键词
AdaBoost algorithm; Back Propagation Neural Networks; Machine learning; Zircon origin; TRACE-ELEMENT COMPOSITION; HYDROTHERMAL ZIRCON; MAGMATIC ZIRCON; JACK HILLS; GEOCHRONOLOGY;
D O I
10.1016/j.gr.2024.09.010
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study presented a novel, rapid, and accurate method for determining zircon origin via a comprehensive analysis of a dataset containing 27,818 zircon trace element sets. This method integrated back propagation neural networks with the AdaBoost algorithm. The optimal classifier characterized as a linear combination of a two-layer neural network model, comprised 100 base classifiers and 400 hidden neurons. It was rigorously trained over 1000 iterations, which resulted in an unbiased error rate of 8.31%. To facilitate practical application, the classifier was integrated into a macro-enabled Excel spreadsheet. (c) 2024 International Association for Gondwana Research. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:227 / 233
页数:7
相关论文
共 50 条
  • [31] Classifying binary black holes from Population III stars with the Einstein Telescope: A machine-learning approach
    Santoliquido, Filippo
    Dupletsa, Ulyana
    Tissino, Jacopo
    Branchesi, Marica
    Iacovelli, Francesco
    Iorio, Giuliano
    Mapelli, Michela
    Gerosa, Davide
    Harms, Jan
    Pasquato, Mario
    ASTRONOMY & ASTROPHYSICS, 2024, 690
  • [32] Machine-learning Love: classifying the equation of state of neutron stars with transformers
    Goncalves, Goncalo
    Ferreira, Marcio
    Aveiro, Joao
    Onofre, Antonio
    Freitas, Felipe F.
    Providencia, Constanca
    Font, Jose A.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (12):
  • [33] Organization of oscillatory zoning in zircon: Analysis, scaling, geochemistry, and model of a zircon from Kipawa, Quebec, Canada
    Fowler, A
    Prokoph, A
    Stern, R
    Dupuis, C
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2002, 66 (02) : 311 - 328
  • [34] A MACHINE LEARNING APPROACH FOR CLASSIFYING FAULTS IN MICROGRIDS USING WAVELET DECOMPOSITION
    Khalaf, Aya
    Al Hassan, Hashim A.
    Emes, Adam
    Akcakaya, Murat
    Grainger, Brandon M.
    2019 IEEE 29TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2019,
  • [35] Does zircon geochemistry record global sediment subduction?
    Sundell, Kurt E.
    Macdonald, Francis A.
    Puetz, Stephen J.
    GEOLOGY, 2024, 52 (04) : 282 - 286
  • [36] Zircon chronology and REE geochemistry of granulite xenolith at Hannuoba
    Fan, QC
    Liu, RX
    Li, HM
    Li, N
    Sui, JL
    Lin, ZR
    CHINESE SCIENCE BULLETIN, 1998, 43 (18): : 1510 - 1515
  • [37] Zircon chronology and REE geochemistry of granulite xenolith at Hannuoba
    FAN Qicheng\+1
    2. Tianjin Institute of Geology and Mineral Resources
    Chinese Science Bulletin, 1998, (18) : 1510 - 1515
  • [38] Predicting the chemical reactivity of organic materials using a machine-learning approach
    Lee, Byungju
    Yoo, Jaekyun
    Kang, Kisuk
    CHEMICAL SCIENCE, 2020, 11 (30) : 7813 - 7822
  • [39] Detection of Colchicum autumnale in drone images, using a machine-learning approach
    Lukas Petrich
    Georg Lohrmann
    Matthias Neumann
    Fabio Martin
    Andreas Frey
    Albert Stoll
    Volker Schmidt
    Precision Agriculture, 2020, 21 : 1291 - 1303
  • [40] MACHINE LEARNING APPROACH FOR CLASSIFYING HISTONE MODIFICATIONS
    Gorthi, Aparna
    Jain, Ravi
    Dimitrova, Nevenka
    2009 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2009), 2009, : 33 - 36