Classifying zircon: A machine-learning approach using zircon geochemistry

被引:0
|
作者
Kong, Jintao [1 ,2 ]
Yu, Hongru [1 ]
Sun, Junyi [1 ]
Zhang, Huan [1 ]
Zhang, Miaomiao [3 ]
Xia, Zhi [4 ]
机构
[1] PetroChina Coalbed Methane Co Ltd, Linfen Branch, Linfen 042300, Peoples R China
[2] Jilin Univ, Coll Earth Sci, Changchun 130000, Peoples R China
[3] Accenture, Melbourne 3000, Australia
[4] South China Normal Univ, Sch Geog, Guangzhou 510630, Peoples R China
关键词
AdaBoost algorithm; Back Propagation Neural Networks; Machine learning; Zircon origin; TRACE-ELEMENT COMPOSITION; HYDROTHERMAL ZIRCON; MAGMATIC ZIRCON; JACK HILLS; GEOCHRONOLOGY;
D O I
10.1016/j.gr.2024.09.010
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study presented a novel, rapid, and accurate method for determining zircon origin via a comprehensive analysis of a dataset containing 27,818 zircon trace element sets. This method integrated back propagation neural networks with the AdaBoost algorithm. The optimal classifier characterized as a linear combination of a two-layer neural network model, comprised 100 base classifiers and 400 hidden neurons. It was rigorously trained over 1000 iterations, which resulted in an unbiased error rate of 8.31%. To facilitate practical application, the classifier was integrated into a macro-enabled Excel spreadsheet. (c) 2024 International Association for Gondwana Research. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:227 / 233
页数:7
相关论文
共 50 条
  • [41] A New Machine-Learning Approach for Classifying Hysteresis in Suspended-Sediment Discharge Relationships Using High-Frequency Monitoring Data
    Hamshaw, Scott D.
    Dewoolkar, Mandar M.
    Schroth, Andrew W.
    Wemple, Beverley C.
    Rizzo, Donna M.
    WATER RESOURCES RESEARCH, 2018, 54 (06) : 4040 - 4058
  • [42] Prediction of bacterial associations with plants using a supervised machine-learning approach
    Manuel Martinez-Garcia, Pedro
    Lopez-Solanilla, Emilia
    Ramos, Cayo
    Rodriguez-Palenzuela, Pablo
    ENVIRONMENTAL MICROBIOLOGY, 2016, 18 (12) : 4847 - 4861
  • [43] Predicting obesity and smoking using medication data: A machine-learning approach
    Ali, Sitwat
    Na, Renhua
    Waterhouse, Mary
    Jordan, Susan J.
    Olsen, Catherine M.
    Whiteman, David C.
    Neale, Rachel E.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2022, 31 (01) : 91 - 99
  • [44] Predicting obesity and smoking using medication data: a machine-learning approach
    Ali, Sitwat
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2021, 50
  • [45] Predicting Vehicles' Positions using Roadside Units: a Machine-Learning Approach
    Sangare, Mamoudou
    Banerjee, Soumya
    Muhlethaler, Paul
    Bouzefrane, Samia
    2018 IEEE CONFERENCE ON STANDARDS FOR COMMUNICATIONS AND NETWORKING (IEEE CSCN), 2018,
  • [46] An Efficient Approach to Recognize Hand Gestures Using Machine-Learning Algorithms
    Wahid, Md Ferdous
    Tafreshi, Reza
    Al-Sowaidi, Mubarak
    Langari, Reza
    2018 IEEE 4TH MIDDLE EAST CONFERENCE ON BIOMEDICAL ENGINEERING (MECBME), 2018, : 171 - 176
  • [47] Detection of Colchicum autumnale in drone images, using a machine-learning approach
    Petrich, Lukas
    Lohrmann, Georg
    Neumann, Matthias
    Martin, Fabio
    Frey, Andreas
    Stoll, Albert
    Schmidt, Volker
    PRECISION AGRICULTURE, 2020, 21 (06) : 1291 - 1303
  • [48] How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach
    Ichikawa, Daisuke
    Saito, Toki
    Ujita, Waka
    Oyama, Hiroshi
    JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 64 : 20 - 24
  • [49] A Machine-Learning Approach for Earthquake Magnitude Estimation
    Mousavi, S. Mostafa
    Beroza, Gregory C.
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (01)
  • [50] MACE: A Machine-learning Approach to Chemistry Emulation
    Maes, Silke
    De Ceuster, Frederik
    van de Sande, Marie
    Decin, Leen
    ASTROPHYSICAL JOURNAL, 2024, 969 (02):