Theory Identity: A Machine-Learning Approach

被引:3
|
作者
Larsen, Kai R. [1 ]
Hovorka, Dirk [2 ]
West, Jevin [3 ]
Birt, James [2 ]
Pfaff, James R. [1 ]
Chambers, Trevor W. [1 ]
Sampedro, Zebula R. [1 ]
Zager, Nick [1 ]
Vanstone, Bruce [2 ]
机构
[1] Univ Colorado, Boulder, CO 80309 USA
[2] Bond Univ, Southport, Qld 4229, Australia
[3] Washington Univ, St Louis, MO 63130 USA
关键词
INFORMATION-SYSTEMS; USER ACCEPTANCE; TECHNOLOGY;
D O I
10.1109/HICSS.2014.564
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Theory identity is a fundamental problem for researchers seeking to determine theory quality, create theory ontologies and taxonomies, or perform focused theory-specific reviews and meta-analyses. We demonstrate a novel machine-learning approach to theory identification based on citation data and article features. The multi-disciplinary ecosystem of articles which cite a theory's originating paper is created and refined into the network of papers predicted to contribute to, and thus identify, a specific theory. We provide a 'proof-of-concept' for a highly-cited theory. Implications for cross-disciplinary theory integration and the identification of theories for a rapidly expanding scientific literature are discussed.
引用
收藏
页码:4639 / 4648
页数:10
相关论文
共 50 条
  • [1] A machine-learning approach to investigating the complexity of theory of mind in individuals with schizophrenia
    Bosco, Francesca Marina
    Colle, Livia
    Salvini, Rogerio
    Gabbatore, Ilaria
    [J]. HELIYON, 2024, 10 (09)
  • [2] A Machine-Learning Approach to Time Discrimination
    Hansen, Peter
    [J]. 2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 2132 - 2133
  • [3] How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach
    Ichikawa, Daisuke
    Saito, Toki
    Ujita, Waka
    Oyama, Hiroshi
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 64 : 20 - 24
  • [4] Machine-learning approach for discovery of conventional superconductors
    Tran, Huan
    Vu, Tuoc N.
    [J]. PHYSICAL REVIEW MATERIALS, 2023, 7 (05)
  • [5] A Machine-Learning Approach for Earthquake Magnitude Estimation
    Mousavi, S. Mostafa
    Beroza, Gregory C.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (01)
  • [6] MACE: A Machine-learning Approach to Chemistry Emulation
    Maes, Silke
    De Ceuster, Frederik
    van de Sande, Marie
    Decin, Leen
    [J]. ASTROPHYSICAL JOURNAL, 2024, 969 (02):
  • [7] A machine-learning approach to predict postprandial hypoglycemia
    Seo, Wonju
    Lee, You-Bin
    Lee, Seunghyun
    Jin, Sang-Man
    Park, Sung-Min
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [8] A machine-learning approach to ranking RDF properties
    Dessi, Andrea
    Atzori, Maurizio
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2016, 54 : 366 - 377
  • [9] Forecasting client retention - A machine-learning approach
    Elisa Schaeffer, Satu
    Rodriguez Sanchez, Sara Veronica
    [J]. JOURNAL OF RETAILING AND CONSUMER SERVICES, 2020, 52
  • [10] A Machine-learning Approach to Enhancing eROSITA Observations
    Soltis, John
    Ntampaka, Michelle
    Wu, John F.
    ZuHone, John
    Evrard, August
    Farahi, Arya
    Ho, Matthew
    Nagai, Daisuke
    [J]. ASTROPHYSICAL JOURNAL, 2022, 940 (01):