A Machine-learning Approach to Enhancing eROSITA Observations

被引:3
|
作者
Soltis, John [1 ]
Ntampaka, Michelle [1 ,2 ]
Wu, John F. [1 ,2 ]
ZuHone, John [3 ]
Evrard, August [4 ,5 ,6 ]
Farahi, Arya [7 ,8 ]
Ho, Matthew [9 ,10 ]
Nagai, Daisuke [11 ]
机构
[1] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[2] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA
[3] Ctr Astrophys Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138 USA
[4] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Leinweber Ctr Theoret Phys, Ann Arbor, MI 48109 USA
[7] Univ Texas Austin, Dept Stat, Austin, TX 78705 USA
[8] Univ Texas Austin, Dept Data Sci, Austin, TX 78705 USA
[9] Carnegie Mellon Univ, McWilliams Ctr Cosmol, Dept Phys, Pittsburgh, PA 15213 USA
[10] Carnegie Mellon Univ, NSF AI Planning Inst Phys Future, Pittsburgh, PA 15213 USA
[11] Yale Univ, Dept Phys, New Haven, CT 06520 USA
来源
ASTROPHYSICAL JOURNAL | 2022年 / 940卷 / 01期
关键词
COOL CORE CLUSTERS; HALO MASS FUNCTION; GALAXY CLUSTERS; NONTHERMAL PRESSURE; INTRACLUSTER MEDIUM; ANALYTICAL-MODEL; COSMOLOGY; HISTORY; SHAPES; BIAS;
D O I
10.3847/1538-4357/ac9b1b
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The eROSITA X-ray telescope, launched in 2019, is predicted to observe roughly 100,000 galaxy clusters. Follow-up observations of these clusters from Chandra, for example, will be needed to resolve outstanding questions about galaxy cluster physics. Deep Chandra cluster observations are expensive, and it is unfeasible to follow up every eROSITA cluster, therefore the objects that are chosen for follow-up must be chosen with care. To address this, we have developed an algorithm for predicting longer-duration, background-free observations, based on mock eROSITA observations. We make use of the hydrodynamic cosmological simulation Magneticum, simulate eROSITA instrument conditions using SIXTE, and apply a novel convolutional neural network to output a deep Chandra-like "super observation" of each cluster in our simulation sample. Any follow-up merit assessment tool should be designed with a specific use case in mind; our model produces observations that accurately and precisely reproduce the cluster morphology, which is a critical ingredient for determining a cluster's dynamical state and core type. Our model will advance our understanding of galaxy clusters by improving follow-up selection, and it demonstrates that image-to-image deep learning algorithms are a viable method for simulating realistic follow-up observations.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Enhancing the Performance of Photonic Sensor Using Machine-Learning Approach
    Dwivedi, Yogendra Swaroop
    Singh, Rishav
    Sharma, Anuj K.
    Sharma, Ajay Kumar
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (03) : 2320 - 2327
  • [2] A machine-learning approach to correcting atmospheric seeing in solar flare observations
    Armstrong, John A.
    Fletcher, Lyndsay
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 501 (02) : 2647 - 2658
  • [3] A Machine-Learning Approach to Time Discrimination
    Hansen, Peter
    [J]. 2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 2132 - 2133
  • [4] Theory Identity: A Machine-Learning Approach
    Larsen, Kai R.
    Hovorka, Dirk
    West, Jevin
    Birt, James
    Pfaff, James R.
    Chambers, Trevor W.
    Sampedro, Zebula R.
    Zager, Nick
    Vanstone, Bruce
    [J]. 2014 47TH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), 2014, : 4639 - 4648
  • [5] Rainfall Estimation From TEMPEST-D CubeSat Observations: A Machine-Learning Approach
    Radhakrishnan, Chandrasekar
    Chandrasekar, V
    Reising, Steven C.
    Berg, Wesley
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 3626 - 3636
  • [6] Rainfall Estimation From TEMPEST-D CubeSat Observations: A Machine-Learning Approach
    Radhakrishnan, Chandrasekar
    Chandrasekar, V.
    Reising, Steven C.
    Berg, Wesley
    [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15 : 3626 - 3636
  • [7] How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach
    Ichikawa, Daisuke
    Saito, Toki
    Ujita, Waka
    Oyama, Hiroshi
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 64 : 20 - 24
  • [8] Machine-learning approach for discovery of conventional superconductors
    Tran, Huan
    Vu, Tuoc N.
    [J]. PHYSICAL REVIEW MATERIALS, 2023, 7 (05)
  • [9] A Machine-Learning Approach for Earthquake Magnitude Estimation
    Mousavi, S. Mostafa
    Beroza, Gregory C.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (01)
  • [10] MACE: A Machine-learning Approach to Chemistry Emulation
    Maes, Silke
    De Ceuster, Frederik
    van de Sande, Marie
    Decin, Leen
    [J]. ASTROPHYSICAL JOURNAL, 2024, 969 (02):