Characteristic Polynomials of Sparse Non-Hermitian Random MatricesCharacteristic Polynomials of Sparse Non-Hermitian Random MatricesI. Afanasiev, T. Shcherbina

被引:0
|
作者
Ievgenii Afanasiev [1 ]
Tatyana Shcherbina [2 ]
机构
[1] B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine,Department of Mathematics
[2] University of Wisconsin,undefined
关键词
D O I
10.1007/s10955-024-03379-5
中图分类号
学科分类号
摘要
We consider the asymptotic local behavior of the second correlation functions of the characteristic polynomials of sparse non-Hermitian random matrices Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document} whose entries have the form xjk=djkwjk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{jk}=d_{jk}w_{jk}$$\end{document} with iid complex standard Gaussian wjk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{jk}$$\end{document} and normalised iid Bernoulli(p) djk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{jk}$$\end{document}. It is shown that, as p→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow \infty $$\end{document}, the local asymptotic behavior of the second correlation function of characteristic polynomials near z0∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_0\in \mathbb {C}$$\end{document} coincides with those for Ginibre ensemble: it converges to a determinant with Ginibre kernel in the bulk |z0|<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z_0|<1$$\end{document}, and it is factorized if |z0|>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z_0|>1$$\end{document}. For the finite p>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>0$$\end{document}, the behavior is different and exhibits the transition between different regimes depending on values of p and |z0|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z_0|^2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Characteristic Polynomials of Sparse Non-Hermitian Random Matrices
    Afanasiev, Ievgenii
    Shcherbina, Tatyana
    JOURNAL OF STATISTICAL PHYSICS, 2025, 192 (01)
  • [2] Spectral theory of sparse non-Hermitian random matrices
    Metz, Fernando Lucas
    Neri, Izaak
    Rogers, Tim
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (43)
  • [3] On the Correlation Functions of the Characteristic Polynomials of Non-Hermitian Random Matrices with Independent Entries
    Ie. Afanasiev
    Journal of Statistical Physics, 2019, 176 : 1561 - 1582
  • [4] On the Correlation Functions of the Characteristic Polynomials of Non-Hermitian Random Matrices with Independent Entries
    Afanasiev, Ie.
    JOURNAL OF STATISTICAL PHYSICS, 2019, 176 (06) : 1561 - 1582
  • [5] Spectra of Sparse Non-Hermitian Random Matrices: An Analytical Solution
    Neri, I.
    Metz, F. L.
    PHYSICAL REVIEW LETTERS, 2012, 109 (03)
  • [6] Path-integral approach to sparse non-Hermitian random matrices
    Baron, Joseph W.
    PHYSICAL REVIEW E, 2025, 111 (03)
  • [7] Eigenvalue repulsion and eigenvector localization in sparse non-Hermitian random matrices
    Zhang, Grace H.
    Nelson, David R.
    PHYSICAL REVIEW E, 2019, 100 (05)
  • [8] NON-HERMITIAN ORTHOGONAL POLYNOMIALS ON A TREFOIL
    Barhoumi, Ahmad B.
    Yattselev, Maxim L.
    arXiv, 2023,
  • [9] Non-Hermitian Orthogonal Polynomials on a Trefoil
    Ahmad B. Barhoumi
    Maxim L. Yattselev
    Constructive Approximation, 2024, 59 : 271 - 331
  • [10] Non-Hermitian Orthogonal Polynomials on a Trefoil
    Barhoumi, Ahmad B.
    Yattselev, Maxim L.
    CONSTRUCTIVE APPROXIMATION, 2024, 59 (02) : 271 - 331