Non-Hermitian Orthogonal Polynomials on a Trefoil

被引:0
|
作者
Barhoumi, Ahmad B. [1 ]
Yattselev, Maxim L. [2 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
[2] Indiana Univ Purdue Univ Indianapolis, Dept Math Sci, 402 North Blackford St, Indianapolis, IN 46202 USA
基金
美国国家科学基金会;
关键词
Non-Hermitian orthogonality; Strong asymptotics; Pade approximation; Riemann-Hilbert analysis; PADE APPROXIMANTS; STRONG ASYMPTOTICS; CONVERGENCE;
D O I
10.1007/s00365-023-09640-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate asymptotic behavior of polynomials Q(n)(z) satisfying non-Hermitian orthogonality relations integral(Delta)s(k)Q(n)(s)rho(s)ds = 0, k is an element of{0,..., n - 1}, where Delta is a Chebotarev (minimal capacity) contour connecting three non-collinear points and rho(s) is a Jacobi-type weight including a possible power-type singularity at the Chebotarev center of Delta
引用
收藏
页码:271 / 331
页数:61
相关论文
共 50 条
  • [1] Non-Hermitian Orthogonal Polynomials on a Trefoil
    Ahmad B. Barhoumi
    Maxim L. Yattselev
    [J]. Constructive Approximation, 2024, 59 : 271 - 331
  • [2] A Periodic Hexagon Tiling Model and Non-Hermitian Orthogonal Polynomials
    Charlier, C.
    Duits, M.
    Kuijlaars, A. B. J.
    Lenells, J.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (01) : 401 - 466
  • [3] A Periodic Hexagon Tiling Model and Non-Hermitian Orthogonal Polynomials
    C. Charlier
    M. Duits
    A. B. J. Kuijlaars
    J. Lenells
    [J]. Communications in Mathematical Physics, 2020, 378 : 401 - 466
  • [4] Determination of S-curves with applications to the theory of non-Hermitian orthogonal polynomials
    Alvarez, Gabriel
    Martinez Alonso, Luis
    Medina, Elena
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [5] Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians
    Ndayiragije, F.
    Van Assche, W.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (50)
  • [6] Non-Hermitian oscillator Hamiltonians and multiple Charlier polynomials
    Miki, Hiroshi
    Vinet, Luc
    Zhedanov, Alexei
    [J]. PHYSICS LETTERS A, 2011, 376 (02) : 65 - 69
  • [7] ON THE APPLICATION OF ORTHOGONAL POLYNOMIALS TO THE ITERATIVE SOLUTION OF LINEAR-SYSTEMS OF EQUATIONS WITH INDEFINITE OR NON-HERMITIAN MATRICES
    GRAGG, WB
    REICHEL, L
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 88-9 : 349 - 371
  • [8] Non-Hermitian Skin Effect in Non-Hermitian Optical Systems
    Zhang, Yingqiu
    Wei, Zhongchao
    [J]. LASER & PHOTONICS REVIEWS, 2024,
  • [9] Non-Hermitian Skin Effect in a Non-Hermitian Electrical Circuit
    Liu, Shuo
    Shao, Ruiwen
    Ma, Shaojie
    Zhang, Lei
    You, Oubo
    Wu, Haotian
    Xiang, Yuan Jiang
    Cui, Tie Jun
    Zhang, Shuang
    [J]. RESEARCH, 2021, 2021
  • [10] QUASI-KERNEL POLYNOMIALS AND THEIR USE IN NON-HERMITIAN MATRIX ITERATIONS
    FREUND, RW
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 43 (1-2) : 135 - 158