Non-Hermitian Orthogonal Polynomials on a Trefoil

被引:0
|
作者
Ahmad B. Barhoumi
Maxim L. Yattselev
机构
[1] University of Michigan,Department of Mathematics
[2] Indiana University-Purdue University Indianapolis,Department of Mathematical Sciences
来源
关键词
Non-Hermitian orthogonality; Strong asymptotics; Padé approximation; Riemann–Hilbert analysis; 42C05; 41A20; 41A21;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate asymptotic behavior of polynomials Qn(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Q_n(z) $$\end{document} satisfying non-Hermitian orthogonality relations ∫ΔskQn(s)ρ(s)ds=0,k∈{0,…,n-1},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _\Delta s^kQ_n(s)\rho (s)\textrm{d}s =0, \quad k\in \{0,\ldots ,n-1\}, \end{aligned}$$\end{document}where Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta $$\end{document} is a Chebotarëv (minimal capacity) contour connecting three non-collinear points and ρ(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \rho (s) $$\end{document} is a Jacobi-type weight including a possible power-type singularity at the Chebotarëv center of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta $$\end{document}.
引用
收藏
页码:271 / 331
页数:60
相关论文
共 50 条
  • [1] Non-Hermitian Orthogonal Polynomials on a Trefoil
    Barhoumi, Ahmad B.
    Yattselev, Maxim L.
    [J]. CONSTRUCTIVE APPROXIMATION, 2024, 59 (02) : 271 - 331
  • [2] A Periodic Hexagon Tiling Model and Non-Hermitian Orthogonal Polynomials
    Charlier, C.
    Duits, M.
    Kuijlaars, A. B. J.
    Lenells, J.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (01) : 401 - 466
  • [3] A Periodic Hexagon Tiling Model and Non-Hermitian Orthogonal Polynomials
    C. Charlier
    M. Duits
    A. B. J. Kuijlaars
    J. Lenells
    [J]. Communications in Mathematical Physics, 2020, 378 : 401 - 466
  • [4] Determination of S-curves with applications to the theory of non-Hermitian orthogonal polynomials
    Alvarez, Gabriel
    Martinez Alonso, Luis
    Medina, Elena
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [5] Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians
    Ndayiragije, F.
    Van Assche, W.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (50)
  • [6] Non-Hermitian oscillator Hamiltonians and multiple Charlier polynomials
    Miki, Hiroshi
    Vinet, Luc
    Zhedanov, Alexei
    [J]. PHYSICS LETTERS A, 2011, 376 (02) : 65 - 69
  • [7] ON THE APPLICATION OF ORTHOGONAL POLYNOMIALS TO THE ITERATIVE SOLUTION OF LINEAR-SYSTEMS OF EQUATIONS WITH INDEFINITE OR NON-HERMITIAN MATRICES
    GRAGG, WB
    REICHEL, L
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 88-9 : 349 - 371
  • [8] Non-Hermitian Skin Effect in Non-Hermitian Optical Systems
    Zhang, Yingqiu
    Wei, Zhongchao
    [J]. LASER & PHOTONICS REVIEWS, 2024,
  • [9] Non-Hermitian Skin Effect in a Non-Hermitian Electrical Circuit
    Liu, Shuo
    Shao, Ruiwen
    Ma, Shaojie
    Zhang, Lei
    You, Oubo
    Wu, Haotian
    Xiang, Yuan Jiang
    Cui, Tie Jun
    Zhang, Shuang
    [J]. RESEARCH, 2021, 2021
  • [10] QUASI-KERNEL POLYNOMIALS AND THEIR USE IN NON-HERMITIAN MATRIX ITERATIONS
    FREUND, RW
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 43 (1-2) : 135 - 158