Non-Hermitian Orthogonal Polynomials on a Trefoil

被引:0
|
作者
Ahmad B. Barhoumi
Maxim L. Yattselev
机构
[1] University of Michigan,Department of Mathematics
[2] Indiana University-Purdue University Indianapolis,Department of Mathematical Sciences
来源
关键词
Non-Hermitian orthogonality; Strong asymptotics; Padé approximation; Riemann–Hilbert analysis; 42C05; 41A20; 41A21;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate asymptotic behavior of polynomials Qn(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Q_n(z) $$\end{document} satisfying non-Hermitian orthogonality relations ∫ΔskQn(s)ρ(s)ds=0,k∈{0,…,n-1},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _\Delta s^kQ_n(s)\rho (s)\textrm{d}s =0, \quad k\in \{0,\ldots ,n-1\}, \end{aligned}$$\end{document}where Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta $$\end{document} is a Chebotarëv (minimal capacity) contour connecting three non-collinear points and ρ(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \rho (s) $$\end{document} is a Jacobi-type weight including a possible power-type singularity at the Chebotarëv center of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta $$\end{document}.
引用
收藏
页码:271 / 331
页数:60
相关论文
共 50 条
  • [31] Non-Hermitian Floquet invisibility
    Longhi, S.
    [J]. EPL, 2017, 117 (01)
  • [32] Non-Hermitian boost deformation
    Guo, Taozhi
    Kawabata, Kohei
    Nakai, Ryota
    Ryu, Shinsei
    [J]. PHYSICAL REVIEW B, 2023, 108 (07)
  • [33] Non-Hermitian Anderson Transport
    Weidemann, Sebastian
    Kremer, Mark
    Longhi, Stefano
    Szameit, Alexander
    [J]. 2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [34] Monopoles in non-Hermitian systems
    Zhang, Qi
    Wu, Biao
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (06)
  • [35] A non-Hermitian circular billiard
    Patkar, Saket P.
    Jain, Sudhir R.
    [J]. PHYSICS LETTERS A, 2010, 374 (34) : 3396 - 3399
  • [36] Non-Hermitian topological photonics
    Nasari, Hadiseh
    Pyrialakos, Georgios G.
    Christodoulides, Demetrios N.
    Khajavikhan, Mercedeh
    [J]. OPTICAL MATERIALS EXPRESS, 2023, 13 (04) : 870 - 885
  • [37] Emergent non-Hermitian models
    Eek, Lumen
    Moustaj, Anouar
    Rontgen, Malte
    Pagneux, Vincent
    Achilleos, Vassos
    Smith, Cristiane Morais
    [J]. PHYSICAL REVIEW B, 2024, 109 (04)
  • [38] The dawn of non-Hermitian optics
    Ramy El-Ganainy
    Mercedeh Khajavikhan
    Demetrios N. Christodoulides
    Sahin K. Ozdemir
    [J]. Communications Physics, 2
  • [39] Non-Hermitian squeezed polarons
    Qin, Fang
    Shen, Ruizhe
    Lee, Ching Hua
    [J]. PHYSICAL REVIEW A, 2023, 107 (01)
  • [40] Non-Hermitian quantum rings
    Longhi, Stefano
    [J]. PHYSICAL REVIEW A, 2013, 88 (06):