Non-Hermitian Orthogonal Polynomials on a Trefoil

被引:0
|
作者
Ahmad B. Barhoumi
Maxim L. Yattselev
机构
[1] University of Michigan,Department of Mathematics
[2] Indiana University-Purdue University Indianapolis,Department of Mathematical Sciences
来源
关键词
Non-Hermitian orthogonality; Strong asymptotics; Padé approximation; Riemann–Hilbert analysis; 42C05; 41A20; 41A21;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate asymptotic behavior of polynomials Qn(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Q_n(z) $$\end{document} satisfying non-Hermitian orthogonality relations ∫ΔskQn(s)ρ(s)ds=0,k∈{0,…,n-1},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _\Delta s^kQ_n(s)\rho (s)\textrm{d}s =0, \quad k\in \{0,\ldots ,n-1\}, \end{aligned}$$\end{document}where Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta $$\end{document} is a Chebotarëv (minimal capacity) contour connecting three non-collinear points and ρ(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \rho (s) $$\end{document} is a Jacobi-type weight including a possible power-type singularity at the Chebotarëv center of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta $$\end{document}.
引用
收藏
页码:271 / 331
页数:60
相关论文
共 50 条
  • [21] Anomalous Transport Induced by Non-Hermitian Anomalous Berry Connection in Non-Hermitian Systems
    王炅昊
    陶禹良
    徐勇
    [J]. Chinese Physics Letters., 2022, 39 (01) - 18
  • [22] Anomalous Transport Induced by Non-Hermitian Anomalous Berry Connection in Non-Hermitian Systems
    王炅昊
    陶禹良
    徐勇
    [J]. Chinese Physics Letters, 2022, (01) : 5 - 18
  • [23] Non-Hermitian landscape of autoionization
    Mouloudakis, G.
    Lambropoulos, P.
    [J]. PHYSICAL REVIEW A, 2023, 108 (06)
  • [24] Non-Hermitian masking machine
    Metwally, N.
    Eid, A.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2024, 78 (06):
  • [25] Non-hermitian integrable models
    Bogolyubov N.M.
    [J]. Journal of Mathematical Sciences, 2001, 104 (3) : 1097 - 1104
  • [26] NON-HERMITIAN YUKAWA COUPLINGS
    BRANCO, GC
    SILVAMARCOS, JI
    [J]. PHYSICS LETTERS B, 1994, 331 (3-4) : 390 - 394
  • [27] Non-Hermitian superintegrable systems
    Correa, Francisco
    Inzunza, Luis
    Marquette, Ian
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (34)
  • [28] Non-Hermitian topological magnonics
    Yu, Tao
    Zou, Ji
    Zeng, Bowen
    Rao, J. W.
    Xia, Ke
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1062 : 1 - 86
  • [29] Non-Hermitian Floquet invisibility
    Longhi, S.
    [J]. EPL, 2017, 117 (01)
  • [30] Non-Hermitian topological photonics
    Nasari, Hadiseh
    Pyrialakos, Georgios G.
    Christodoulides, Demetrios N.
    Khajavikhan, Mercedeh
    [J]. OPTICAL MATERIALS EXPRESS, 2023, 13 (04): : 870 - 885