Characteristic Polynomials of Sparse Non-Hermitian Random MatricesCharacteristic Polynomials of Sparse Non-Hermitian Random MatricesI. Afanasiev, T. Shcherbina

被引:0
|
作者
Ievgenii Afanasiev [1 ]
Tatyana Shcherbina [2 ]
机构
[1] B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine,Department of Mathematics
[2] University of Wisconsin,undefined
关键词
D O I
10.1007/s10955-024-03379-5
中图分类号
学科分类号
摘要
We consider the asymptotic local behavior of the second correlation functions of the characteristic polynomials of sparse non-Hermitian random matrices Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document} whose entries have the form xjk=djkwjk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{jk}=d_{jk}w_{jk}$$\end{document} with iid complex standard Gaussian wjk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{jk}$$\end{document} and normalised iid Bernoulli(p) djk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{jk}$$\end{document}. It is shown that, as p→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow \infty $$\end{document}, the local asymptotic behavior of the second correlation function of characteristic polynomials near z0∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_0\in \mathbb {C}$$\end{document} coincides with those for Ginibre ensemble: it converges to a determinant with Ginibre kernel in the bulk |z0|<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z_0|<1$$\end{document}, and it is factorized if |z0|>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z_0|>1$$\end{document}. For the finite p>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>0$$\end{document}, the behavior is different and exhibits the transition between different regimes depending on values of p and |z0|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z_0|^2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] A Periodic Hexagon Tiling Model and Non-Hermitian Orthogonal Polynomials
    Charlier, C.
    Duits, M.
    Kuijlaars, A. B. J.
    Lenells, J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (01) : 401 - 466
  • [42] Spectral Radii of Large Non-Hermitian Random Matrices
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (01) : 326 - 364
  • [43] ON THE SPECTRUM OF SUM AND PRODUCT OF NON-HERMITIAN RANDOM MATRICES
    Bordenave, Charles
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 104 - 113
  • [44] Gap probabilities in non-Hermitian random matrix theory
    Akemann, G.
    Phillips, M. J.
    Shifrin, L.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (06)
  • [45] Replica symmetry breaking in random non-Hermitian systems
    Garcia-Garcia, Antonio M.
    Jia, Yiyang
    Rosa, Dario
    Verbaarschot, Jacobus J. M.
    PHYSICAL REVIEW D, 2022, 105 (12)
  • [46] New developments in Non-hermitian Random Matrix Models
    Janik, RA
    Nowak, MA
    Papp, G
    Zahed, I
    NEW DEVELOPMENTS IN QUANTUM FIELD THEORY, 1998, 366 : 297 - 314
  • [47] Eigenvector correlations in non-Hermitian random matrix ensembles
    Mehlig, B
    Chalker, JT
    ANNALEN DER PHYSIK, 1998, 7 (5-6) : 427 - 436
  • [48] Distribution of eigenvalues of non-Hermitian random XXZ model
    Chihara, K
    Kusakabe, K
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2002, (145): : 225 - 228
  • [49] Eigenvector statistics in non-Hermitian random matrix ensembles
    Chalker, JT
    Mehlig, B
    PHYSICAL REVIEW LETTERS, 1998, 81 (16) : 3367 - 3370
  • [50] Spectral Radii of Large Non-Hermitian Random Matrices
    Tiefeng Jiang
    Yongcheng Qi
    Journal of Theoretical Probability, 2017, 30 : 326 - 364