Characteristic Polynomials of Sparse Non-Hermitian Random MatricesCharacteristic Polynomials of Sparse Non-Hermitian Random MatricesI. Afanasiev, T. Shcherbina

被引:0
|
作者
Ievgenii Afanasiev [1 ]
Tatyana Shcherbina [2 ]
机构
[1] B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine,Department of Mathematics
[2] University of Wisconsin,undefined
关键词
D O I
10.1007/s10955-024-03379-5
中图分类号
学科分类号
摘要
We consider the asymptotic local behavior of the second correlation functions of the characteristic polynomials of sparse non-Hermitian random matrices Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document} whose entries have the form xjk=djkwjk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{jk}=d_{jk}w_{jk}$$\end{document} with iid complex standard Gaussian wjk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{jk}$$\end{document} and normalised iid Bernoulli(p) djk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{jk}$$\end{document}. It is shown that, as p→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow \infty $$\end{document}, the local asymptotic behavior of the second correlation function of characteristic polynomials near z0∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_0\in \mathbb {C}$$\end{document} coincides with those for Ginibre ensemble: it converges to a determinant with Ginibre kernel in the bulk |z0|<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z_0|<1$$\end{document}, and it is factorized if |z0|>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z_0|>1$$\end{document}. For the finite p>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>0$$\end{document}, the behavior is different and exhibits the transition between different regimes depending on values of p and |z0|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z_0|^2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [11] On the Correlation Functions of the Characteristic Polynomials of the Sparse Hermitian Random Matrices
    Ie. Afanasiev
    Journal of Statistical Physics, 2016, 163 : 324 - 356
  • [12] On the Correlation Functions of the Characteristic Polynomials of the Sparse Hermitian Random Matrices
    Afanasiev, Ie.
    JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (02) : 324 - 356
  • [13] Invertibility of sparse non-Hermitian matrices
    Basak, Anirban
    Rudelson, Mark
    ADVANCES IN MATHEMATICS, 2017, 310 : 426 - 483
  • [14] ON WORDS OF NON-HERMITIAN RANDOM MATRICES
    Dubach, Guillaume
    Peled, Yuval
    ANNALS OF PROBABILITY, 2021, 49 (04): : 1886 - 1916
  • [15] Non-hermitian random matrix models
    Janik, RA
    Nowak, MA
    Papp, G
    Zahed, I
    NUCLEAR PHYSICS B, 1997, 501 (03) : 603 - 642
  • [16] Random Hermitian versus random non-Hermitian operators - unexpected links
    Jarosz, A.
    Nowak, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (32): : 10107 - 10122
  • [17] THE CIRCULAR LAW FOR SPARSE NON-HERMITIAN MATRICES
    Basak, Anirban
    Rudelson, Mark
    ANNALS OF PROBABILITY, 2019, 47 (04): : 2359 - 2416
  • [18] Schur Function Expansion in Non-Hermitian Ensembles and Averages of Characteristic Polynomials
    Serebryakov, Alexander
    Simm, Nick
    ANNALES HENRI POINCARE, 2024,
  • [19] Wigner surmise for Hermitian and non-Hermitian chiral random matrices
    Akemann, G.
    Bittner, E.
    Phillips, M. J.
    Shifrin, L.
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [20] Non-hermitian random matrix theory: Method of hermitian reduction
    Feinberg, J
    Zee, A
    NUCLEAR PHYSICS B, 1997, 504 (03) : 579 - 608