Schur Function Expansion in Non-Hermitian Ensembles and Averages of Characteristic Polynomials

被引:2
|
作者
Serebryakov, Alexander [1 ]
Simm, Nick [1 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9RH, England
来源
关键词
MINOR-SUMMATION FORMULA; RANDOM-MATRIX THEORY; EIGENVALUE CORRELATIONS; UNITARY; INTEGRALS; MOMENTS; MODELS;
D O I
10.1007/s00023-024-01483-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study k-point correlators of characteristic polynomials in non-Hermitian ensembles of random matrices, focusing on the Ginibre and truncated unitary random matrices. Our approach is based on the technique of character expansions, which expresses the correlator as a sum over partitions involving Schur functions. We show how to sum the expansions in terms of representations which interchange the role of k with the matrix size N. We also provide a probabilistic interpretation of the character expansion analogous to the Schur measure, linking the correlators to the distribution of the top row in certain Young diagrams. In more specific examples, we evaluate these expressions in terms of kxk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \times k$$\end{document} determinants or Pfaffians.
引用
收藏
页数:48
相关论文
共 50 条
  • [1] Characteristic Polynomials of Sparse Non-Hermitian Random Matrices
    Afanasiev, Ievgenii
    Shcherbina, Tatyana
    JOURNAL OF STATISTICAL PHYSICS, 2025, 192 (01)
  • [2] Characteristic Polynomials of Sparse Non-Hermitian Random MatricesCharacteristic Polynomials of Sparse Non-Hermitian Random MatricesI. Afanasiev, T. Shcherbina
    Ievgenii Afanasiev
    Tatyana Shcherbina
    Journal of Statistical Physics, 192 (1)
  • [3] Transition between Hermitian and non-Hermitian Gaussian ensembles
    Bohigas, O.
    Pato, M. P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (11)
  • [4] Averages of Products and Ratios of Characteristic Polynomials in Polynomial Ensembles
    Gernot Akemann
    Eugene Strahov
    Tim R. Würfel
    Annales Henri Poincaré, 2020, 21 : 3973 - 4002
  • [5] Hermitian and non-Hermitian perturbations of chiral Gaussian β-ensembles
    Alpan, Gokalp
    Kozhan, Rostyslav
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (04)
  • [6] Averages of Products and Ratios of Characteristic Polynomials in Polynomial Ensembles
    Akemann, Gernot
    Strahov, Eugene
    Wurfel, Tim R.
    ANNALES HENRI POINCARE, 2020, 21 (12): : 3973 - 4002
  • [7] NON-HERMITIAN ORTHOGONAL POLYNOMIALS ON A TREFOIL
    Barhoumi, Ahmad B.
    Yattselev, Maxim L.
    arXiv, 2023,
  • [8] Non-Hermitian Orthogonal Polynomials on a Trefoil
    Ahmad B. Barhoumi
    Maxim L. Yattselev
    Constructive Approximation, 2024, 59 : 271 - 331
  • [9] On the Correlation Functions of the Characteristic Polynomials of Non-Hermitian Random Matrices with Independent Entries
    Ie. Afanasiev
    Journal of Statistical Physics, 2019, 176 : 1561 - 1582
  • [10] Non-Hermitian Orthogonal Polynomials on a Trefoil
    Barhoumi, Ahmad B.
    Yattselev, Maxim L.
    CONSTRUCTIVE APPROXIMATION, 2024, 59 (02) : 271 - 331