Schur Function Expansion in Non-Hermitian Ensembles and Averages of Characteristic Polynomials

被引:2
|
作者
Serebryakov, Alexander [1 ]
Simm, Nick [1 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9RH, England
来源
关键词
MINOR-SUMMATION FORMULA; RANDOM-MATRIX THEORY; EIGENVALUE CORRELATIONS; UNITARY; INTEGRALS; MOMENTS; MODELS;
D O I
10.1007/s00023-024-01483-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study k-point correlators of characteristic polynomials in non-Hermitian ensembles of random matrices, focusing on the Ginibre and truncated unitary random matrices. Our approach is based on the technique of character expansions, which expresses the correlator as a sum over partitions involving Schur functions. We show how to sum the expansions in terms of representations which interchange the role of k with the matrix size N. We also provide a probabilistic interpretation of the character expansion analogous to the Schur measure, linking the correlators to the distribution of the top row in certain Young diagrams. In more specific examples, we evaluate these expressions in terms of kxk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \times k$$\end{document} determinants or Pfaffians.
引用
收藏
页数:48
相关论文
共 50 条
  • [21] ON A CLASS OF NON-HERMITIAN MATRICES WITH POSITIVE DEFINITE SCHUR COMPLEMENTS
    Berger, Thomas
    Giribet, Juan
    Martinez Peria, Francisco
    Trunk, Carsten
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (06) : 2375 - 2388
  • [22] Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians
    Ndayiragije, F.
    Van Assche, W.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (50)
  • [23] Non-Hermitian oscillator Hamiltonians and multiple Charlier polynomials
    Miki, Hiroshi
    Vinet, Luc
    Zhedanov, Alexei
    PHYSICS LETTERS A, 2011, 376 (02) : 65 - 69
  • [24] Distribution of complex eigenvalues for symplectic ensembles of non-Hermitian matrices
    Kolesnikov, A.V.
    Efetov, K.B.
    Waves Random Media, 1999, 9 (02): : 71 - 82
  • [25] Scaling limits of complex and symplectic non-Hermitian Wishart ensembles
    Byun, Sung-Soo
    Noda, Kohei
    JOURNAL OF APPROXIMATION THEORY, 2025, 308
  • [26] Distribution of complex eigenvalues for symplectic ensembles of non-Hermitian matrices
    Kolesnikov, AV
    Efetov, KB
    WAVES IN RANDOM MEDIA, 1999, 9 (02): : 71 - 82
  • [27] Large scale correlations in normal non-Hermitian matrix ensembles
    Wiegmann, P
    Zabrodin, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3411 - 3424
  • [28] Characteristic polynomials of products of non-Hermitian Wigner matrices: finite-N results and Lyapunov universality
    Akemann, Gernot
    Goetze, Friedrich
    Neuschel, Thorsten
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2021, 26
  • [29] Semiclassical Husimi Distributions of Schur Vectors in Non-Hermitian Quantum Systems
    Hall, Joseph
    Malzard, Simon
    Graefe, Eva-Maria
    PHYSICAL REVIEW LETTERS, 2023, 131 (04)
  • [30] On the Correlation Function of the Characteristic Polynomials of the Hermitian Wigner Ensemble
    Shcherbina, Tatyana
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (01) : 1 - 21