Distribution of complex eigenvalues for symplectic ensembles of non-Hermitian matrices

被引:15
|
作者
Kolesnikov, AV [1 ]
Efetov, KB [1 ]
机构
[1] Ruhr Univ Bochum, Fak Phys & Astron, D-4630 Bochum, Germany
来源
WAVES IN RANDOM MEDIA | 1999年 / 9卷 / 02期
关键词
D O I
10.1088/0959-7174/9/2/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A symplectic ensemble of disordered non-Hermitian Hamiltonians is studied. Starting from a model with an imaginary magnetic field, we derive a proper supermatrix sigma-model. The zero-dimensional version of this model corresponds to a symplectic ensemble of weakly non-Hermitian matrices. We derive analytically an explicit expression for the density of complex eigenvalues. This function proves to differ qualitatively from those known for the unitary and orthogonal ensembles. In contrast to these cases, a depletion of the eigenvalues occurs near the real axis. The result about the depletion is in agreement with a previous numerical study performed for QCD models.
引用
收藏
页码:71 / 82
页数:12
相关论文
共 50 条
  • [1] Distribution of complex eigenvalues for symplectic ensembles of non-Hermitian matrices
    Kolesnikov, A.V.
    Efetov, K.B.
    Waves Random Media, 1999, 9 (02): : 71 - 82
  • [2] The complex Laguerre symplectic ensemble of non-Hermitian matrices
    Akemann, G
    NUCLEAR PHYSICS B, 2005, 730 (03) : 253 - 299
  • [3] Scaling limits of complex and symplectic non-Hermitian Wishart ensembles
    Byun, Sung-Soo
    Noda, Kohei
    JOURNAL OF APPROXIMATION THEORY, 2025, 308
  • [4] COMPUTING COMPLEX EIGENVALUES OF LARGE NON-HERMITIAN MATRICES
    KERNER, W
    LERBINGER, K
    STEUERWALD, J
    COMPUTER PHYSICS COMMUNICATIONS, 1985, 38 (01) : 27 - 37
  • [5] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [6] REFINED PERTURBATION BOUNDS FOR EIGENVALUES OF HERMITIAN AND NON-HERMITIAN MATRICES
    Ipsen, I. C. F.
    Nadler, B.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (01) : 40 - 53
  • [7] Rank One Non-Hermitian Perturbations of Hermitian β-Ensembles of Random Matrices
    Kozhan, Rostyslav
    JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (01) : 92 - 108
  • [8] Eigenvalues of large chiral non-Hermitian random matrices
    Chang, Shuhua
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [9] Eigenvalues for a class of non-Hermitian tetradiagonal Toeplitz matrices
    Bogoya, Manuel
    Gasca, Juanita
    Grudsky, Sergei M.
    JOURNAL OF SPECTRAL THEORY, 2025, 15 (01) : 441 - 477
  • [10] Distribution of eigenvalues in non-Hermitian Anderson models
    Goldsheid, IY
    Khoruzhenko, BA
    PHYSICAL REVIEW LETTERS, 1998, 80 (13) : 2897 - 2900