Distribution of complex eigenvalues for symplectic ensembles of non-Hermitian matrices

被引:15
|
作者
Kolesnikov, AV [1 ]
Efetov, KB [1 ]
机构
[1] Ruhr Univ Bochum, Fak Phys & Astron, D-4630 Bochum, Germany
来源
WAVES IN RANDOM MEDIA | 1999年 / 9卷 / 02期
关键词
D O I
10.1088/0959-7174/9/2/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A symplectic ensemble of disordered non-Hermitian Hamiltonians is studied. Starting from a model with an imaginary magnetic field, we derive a proper supermatrix sigma-model. The zero-dimensional version of this model corresponds to a symplectic ensemble of weakly non-Hermitian matrices. We derive analytically an explicit expression for the density of complex eigenvalues. This function proves to differ qualitatively from those known for the unitary and orthogonal ensembles. In contrast to these cases, a depletion of the eigenvalues occurs near the real axis. The result about the depletion is in agreement with a previous numerical study performed for QCD models.
引用
收藏
页码:71 / 82
页数:12
相关论文
共 50 条
  • [41] Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework
    Bagchi, B
    Quesne, C
    PHYSICS LETTERS A, 2002, 300 (01) : 18 - 26
  • [42] Wigner surmise for Hermitian and non-Hermitian chiral random matrices
    Akemann, G.
    Bittner, E.
    Phillips, M. J.
    Shifrin, L.
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [43] Eigenvalues of non-Hermitian matrices: A dynamical and an iterative approach-Application to a truncated Swanson model
    Bagarello, Fabio
    Gargano, Francesco
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (09) : 5758 - 5775
  • [44] Eigenvector correlations in non-Hermitian random matrix ensembles
    Mehlig, B
    Chalker, JT
    ANNALEN DER PHYSIK, 1998, 7 (5-6) : 427 - 436
  • [45] Eigenvector statistics in non-Hermitian random matrix ensembles
    Chalker, JT
    Mehlig, B
    PHYSICAL REVIEW LETTERS, 1998, 81 (16) : 3367 - 3370
  • [46] Spectral statistics of non-Hermitian random matrix ensembles
    Chen, Ryan C.
    Kim, Yujin H.
    Lichtman, Jared D.
    Miller, Steven J.
    Sweitzer, Shannon
    Winsor, Eric
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2019, 8 (02)
  • [47] NON-HERMITIAN EXTENSIONS OF WISHART RANDOM MATRIX ENSEMBLES
    Akemann, Gernot
    ACTA PHYSICA POLONICA B, 2011, 42 (05): : 901 - 921
  • [48] Eigenvector correlations in non-Hermitian random matrix ensembles
    Mehlig, B.
    Chalker, J.T.
    Annalen der Physik (Leipzig), 1998, 7 (5-6): : 427 - 436
  • [49] Non-Hermitian topological systems with eigenvalues that are always real
    Long, Yang
    Xue, Haoran
    Zhang, Baile
    PHYSICAL REVIEW B, 2022, 105 (10)
  • [50] Gaussian fluctuations for non-Hermitian random matrix ensembles
    Rider, B.
    Silverstein, Jack W.
    ANNALS OF PROBABILITY, 2006, 34 (06): : 2118 - 2143