Eigenvalues of non-Hermitian matrices: A dynamical and an iterative approach-Application to a truncated Swanson model

被引:1
|
作者
Bagarello, Fabio [1 ,2 ]
Gargano, Francesco [1 ]
机构
[1] Univ Palermo, Dipartimento Ingn, I-90128 Palermo, Italy
[2] INFN, Sez Napoli, Naples, Italy
关键词
estimation of eigenvalues; finite-dimensional Hamiltonian; EIGENVECTORS;
D O I
10.1002/mma.6317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose two different strategies to find eigenvalues and eigenvectors of a given, not necessarily Hermitian, matrix A. Our methods apply also to the case of complex eigenvalues, making the strategies interesting for applications to physics and to pseudo-Hermitian quantum mechanics in particular. We first consider a dynamical approach, based on a pair of ordinary differential equations defined in terms of the matrix A and of its adjoint A(+). Then, we consider an extension of the so-called power method, for which we prove a fixed point theorem for A. A(+) useful in the determination of the eigenvalues of A and A(+). The two strategies are applied to some explicit problems. In particular, we compute the eigenvalues and the eigenvectors of the matrix arising from a recently proposed quantum mechanical system, the truncated Swanson model, and we check some asymptotic features of the Hessenberg matrix.
引用
收藏
页码:5758 / 5775
页数:18
相关论文
共 50 条
  • [1] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    [J]. 5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [2] REFINED PERTURBATION BOUNDS FOR EIGENVALUES OF HERMITIAN AND NON-HERMITIAN MATRICES
    Ipsen, I. C. F.
    Nadler, B.
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (01) : 40 - 53
  • [3] DYNAMICAL SYSTEMS AND NON-HERMITIAN ITERATIVE EIGENSOLVERS
    Embree, Mark
    Lehoucq, Richard B.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1445 - 1473
  • [4] Eigenvalues in the non-Hermitian Anderson model
    Heinrichs, J
    [J]. PHYSICAL REVIEW B, 2001, 63 (16):
  • [5] Eigenvalues of large chiral non-Hermitian random matrices
    Chang, Shuhua
    Jiang, Tiefeng
    Qi, Yongcheng
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [6] COMPUTING COMPLEX EIGENVALUES OF LARGE NON-HERMITIAN MATRICES
    KERNER, W
    LERBINGER, K
    STEUERWALD, J
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1985, 38 (01) : 27 - 37
  • [7] Singular values and eigenvalues of non-Hermitian block Toeplitz matrices
    Tilli, Paolo
    [J]. Calcolo, 1996, 33 (01) : 59 - 69
  • [8] Distribution of complex eigenvalues for symplectic ensembles of non-Hermitian matrices
    Kolesnikov, A.V.
    Efetov, K.B.
    [J]. Waves Random Media, 1999, 9 (02): : 71 - 82
  • [9] REAL EIGENVALUES IN THE NON-HERMITIAN ANDERSON MODEL
    Goldsheid, Ilya
    Sodin, Sasha
    [J]. ANNALS OF APPLIED PROBABILITY, 2018, 28 (05): : 3075 - 3093
  • [10] Singular values and eigenvalues of non-Hermitian block Toeplitz matrices
    Tilli, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 272 : 59 - 89