REAL EIGENVALUES IN THE NON-HERMITIAN ANDERSON MODEL

被引:3
|
作者
Goldsheid, Ilya [1 ]
Sodin, Sasha [1 ,2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
来源
ANNALS OF APPLIED PROBABILITY | 2018年 / 28卷 / 05期
基金
欧洲研究理事会;
关键词
Sample; non-Hermitian; Anderson model; random Schrodinger; TIGHT-BINDING MODEL; DENSITY-OF-STATES; RANDOM MATRICES; LARGE DISORDER; LOCALIZATION; BERNOULLI; DELOCALIZATION; PRODUCTS; THEOREMS; SPACINGS;
D O I
10.1214/18-AAP1383
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The eigenvalues of the Hatano-Nelson non-Hermitian Anderson matrices, in the spectral regions in which the Lyapunov exponent exceeds the non-Hermiticity parameter, are shown to be real and exponentially close to the Hermitian eigenvalues. This complements previous results, according to which the eigenvalues in the spectral regions in which the non-Hermiticity parameter exceeds the Lyapunov exponent are aligned on curves in the complex plane.
引用
收藏
页码:3075 / 3093
页数:19
相关论文
共 50 条
  • [1] Eigenvalues in the non-Hermitian Anderson model
    Heinrichs, J
    PHYSICAL REVIEW B, 2001, 63 (16):
  • [2] Distribution of eigenvalues in non-Hermitian Anderson models
    Goldsheid, IY
    Khoruzhenko, BA
    PHYSICAL REVIEW LETTERS, 1998, 80 (13) : 2897 - 2900
  • [3] Non-Hermitian β-ensemble with real eigenvalues
    Bohigas, O.
    Pato, M. P.
    AIP ADVANCES, 2013, 3 (03):
  • [4] Non-Hermitian potentials and real eigenvalues
    Hook, Daniel W.
    ANNALEN DER PHYSIK, 2012, 524 (6-7) : 106 - 107
  • [5] Real eigenvalues of non-hermitian operators
    Surjan, Peter R.
    Szabados, Agnes
    Gombas, Andras
    MOLECULAR PHYSICS, 2024, 122 (15-16)
  • [6] CLASSES OF NON-HERMITIAN OPERATORS WITH REAL EIGENVALUES
    Bebiano, Natalia
    da Providencia, Joao
    da Providencia, Joao P.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 21 : 98 - 109
  • [7] Regular Spacings of Complex Eigenvalues in the One-Dimensional Non-Hermitian Anderson Model
    Ilya Ya. Goldsheid
    Boris A. Khoruzhenko
    Communications in Mathematical Physics, 2003, 238 : 505 - 524
  • [8] Regular Spacings of complex eigenvalues in the one-dimensional non-Hermitian Anderson model
    Goldsheid, IY
    Khoruzhenko, BA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (03) : 505 - 524
  • [9] Non-Hermitian topological systems with eigenvalues that are always real
    Long, Yang
    Xue, Haoran
    Zhang, Baile
    PHYSICAL REVIEW B, 2022, 105 (10)
  • [10] Level statistics of real eigenvalues in non-Hermitian systems
    Xiao, Zhenyu
    Kawabata, Kohei
    Luo, Xunlong
    Ohtsuki, Tomi
    Shindou, Ryuichi
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):