REAL EIGENVALUES IN THE NON-HERMITIAN ANDERSON MODEL

被引:3
|
作者
Goldsheid, Ilya [1 ]
Sodin, Sasha [1 ,2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
来源
ANNALS OF APPLIED PROBABILITY | 2018年 / 28卷 / 05期
基金
欧洲研究理事会;
关键词
Sample; non-Hermitian; Anderson model; random Schrodinger; TIGHT-BINDING MODEL; DENSITY-OF-STATES; RANDOM MATRICES; LARGE DISORDER; LOCALIZATION; BERNOULLI; DELOCALIZATION; PRODUCTS; THEOREMS; SPACINGS;
D O I
10.1214/18-AAP1383
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The eigenvalues of the Hatano-Nelson non-Hermitian Anderson matrices, in the spectral regions in which the Lyapunov exponent exceeds the non-Hermiticity parameter, are shown to be real and exponentially close to the Hermitian eigenvalues. This complements previous results, according to which the eigenvalues in the spectral regions in which the non-Hermiticity parameter exceeds the Lyapunov exponent are aligned on curves in the complex plane.
引用
收藏
页码:3075 / 3093
页数:19
相关论文
共 50 条
  • [11] The funneling effect in a non-Hermitian Anderson model
    Turker, Z.
    Yuce, C.
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [12] On the Eigenvalues of a Non-Hermitian Hamiltonian
    Ergun, Ebru
    DYNAMICAL SYSTEMS AND METHODS, 2012, : 245 - +
  • [13] Non-Hermitian Anderson Transport
    Weidemann, Sebastian
    Kremer, Mark
    Longhi, Stefano
    Szameit, Alexander
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [14] Distribution of eigenvalues of non-Hermitian random XXZ model
    Chihara, K
    Kusakabe, K
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2002, (145): : 225 - 228
  • [15] Single parameter scaling in the non-Hermitian Anderson model
    Khan, Niaz Ali
    Muhammad, Saz
    Sajid, Muhammad
    Saud, Shah
    PHYSICA SCRIPTA, 2022, 97 (07)
  • [16] Eigenvalues of non-Hermitian Fibonacci Hamiltonians
    Domínguez-Adame, F
    PHYSICA B-CONDENSED MATTER, 2001, 307 (1-4) : 247 - 250
  • [17] APPROXIMATE EIGENVALUES AND NON-HERMITIAN OPERATORS
    LANDAU, HJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A679 - A679
  • [18] On the eigenvalues of some non-Hermitian oscillators
    Fernandez, Francisco M.
    Garcia, Javier
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (19)
  • [19] Non-Hermitian spectra and Anderson localization
    Molinari, Luca G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (26)
  • [20] Non-Hermitian topological Anderson insulators
    Dan-Wei Zhang
    Ling-Zhi Tang
    Li-Jun Lang
    Hui Yan
    Shi-Liang Zhu
    Science China Physics, Mechanics & Astronomy, 2020, 63