REAL EIGENVALUES IN THE NON-HERMITIAN ANDERSON MODEL

被引:3
|
作者
Goldsheid, Ilya [1 ]
Sodin, Sasha [1 ,2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
来源
ANNALS OF APPLIED PROBABILITY | 2018年 / 28卷 / 05期
基金
欧洲研究理事会;
关键词
Sample; non-Hermitian; Anderson model; random Schrodinger; TIGHT-BINDING MODEL; DENSITY-OF-STATES; RANDOM MATRICES; LARGE DISORDER; LOCALIZATION; BERNOULLI; DELOCALIZATION; PRODUCTS; THEOREMS; SPACINGS;
D O I
10.1214/18-AAP1383
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The eigenvalues of the Hatano-Nelson non-Hermitian Anderson matrices, in the spectral regions in which the Lyapunov exponent exceeds the non-Hermiticity parameter, are shown to be real and exponentially close to the Hermitian eigenvalues. This complements previous results, according to which the eigenvalues in the spectral regions in which the non-Hermiticity parameter exceeds the Lyapunov exponent are aligned on curves in the complex plane.
引用
收藏
页码:3075 / 3093
页数:19
相关论文
共 50 条
  • [31] Spectral singularities in a non-Hermitian Friedrichs-Fano-Anderson model
    Longhi, Stefano
    PHYSICAL REVIEW B, 2009, 80 (16)
  • [32] Acceleration of the Arnoldi method and real eigenvalues of the non-Hermitian Wilson-Dirac operator
    Bergner, Georg
    Wuilloud, Jair
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (02) : 299 - 304
  • [33] Eigenvalues of large chiral non-Hermitian random matrices
    Chang, Shuhua
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [34] Eigenvalues for a class of non-Hermitian tetradiagonal Toeplitz matrices
    Bogoya, Manuel
    Gasca, Juanita
    Grudsky, Sergei M.
    JOURNAL OF SPECTRAL THEORY, 2025, 15 (01) : 441 - 477
  • [35] COMPUTING COMPLEX EIGENVALUES OF LARGE NON-HERMITIAN MATRICES
    KERNER, W
    LERBINGER, K
    STEUERWALD, J
    COMPUTER PHYSICS COMMUNICATIONS, 1985, 38 (01) : 27 - 37
  • [36] Observation of an acoustic non-Hermitian topological Anderson insulator
    Zhongming Gu
    He Gao
    Haoran Xue
    Di Wang
    Jiamin Guo
    Zhongqing Su
    Baile Zhang
    Jie Zhu
    Science China Physics, Mechanics & Astronomy, 2023, 66
  • [37] Observation of an acoustic non-Hermitian topological Anderson insulator
    Zhongming Gu
    He Gao
    Haoran Xue
    Di Wang
    Jiamin Guo
    Zhongqing Su
    Baile Zhang
    Jie Zhu
    Science China(Physics,Mechanics & Astronomy), 2023, (09) : 61 - 66
  • [38] Robust Anderson transition in non-Hermitian photonic quasicrystals
    Longhi, Stefano
    OPTICS LETTERS, 2024, 49 (05) : 1373 - 1376
  • [39] Observation of an acoustic non-Hermitian topological Anderson insulator
    Gu, Zhongming
    Gao, He
    Xue, Haoran
    Wang, Di
    Guo, Jiamin
    Su, Zhongqing
    Zhang, Baile
    Zhu, Jie
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2023, 66 (09)
  • [40] Non-Hermitian Maryland model
    Longhi, Stefano
    PHYSICAL REVIEW B, 2021, 103 (22)