REAL EIGENVALUES IN THE NON-HERMITIAN ANDERSON MODEL

被引:3
|
作者
Goldsheid, Ilya [1 ]
Sodin, Sasha [1 ,2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
来源
ANNALS OF APPLIED PROBABILITY | 2018年 / 28卷 / 05期
基金
欧洲研究理事会;
关键词
Sample; non-Hermitian; Anderson model; random Schrodinger; TIGHT-BINDING MODEL; DENSITY-OF-STATES; RANDOM MATRICES; LARGE DISORDER; LOCALIZATION; BERNOULLI; DELOCALIZATION; PRODUCTS; THEOREMS; SPACINGS;
D O I
10.1214/18-AAP1383
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The eigenvalues of the Hatano-Nelson non-Hermitian Anderson matrices, in the spectral regions in which the Lyapunov exponent exceeds the non-Hermiticity parameter, are shown to be real and exponentially close to the Hermitian eigenvalues. This complements previous results, according to which the eigenvalues in the spectral regions in which the non-Hermiticity parameter exceeds the Lyapunov exponent are aligned on curves in the complex plane.
引用
收藏
页码:3075 / 3093
页数:19
相关论文
共 50 条
  • [21] Non-Hermitian topological Anderson insulators
    Zhang, Dan-Wei
    Tang, Ling-Zhi
    Lang, Li-Jun
    Yan, Hui
    Zhu, Shi-Liang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2020, 63 (06)
  • [22] Non-Hermitian topological Anderson insulators
    Dan-Wei Zhang
    Ling-Zhi Tang
    Li-Jun Lang
    Hui Yan
    Shi-Liang Zhu
    ScienceChina(Physics,Mechanics&Astronomy), 2020, (06) : 6 - 16
  • [23] Unifying the Anderson transitions in Hermitian and non-Hermitian systems
    Luo, Xunlong
    Xiao, Zhenyu
    Kawabata, Kohei
    Ohtsuki, Tomi
    Shindou, Ryuichi
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [24] REFINED PERTURBATION BOUNDS FOR EIGENVALUES OF HERMITIAN AND NON-HERMITIAN MATRICES
    Ipsen, I. C. F.
    Nadler, B.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (01) : 40 - 53
  • [25] Non-Hermitian non-PT-symmetric Dirac Hamiltonians with real energy eigenvalues
    Alhaidari, A. D.
    PHYSICS LETTERS A, 2013, 377 (34-36) : 2003 - 2006
  • [26] On the eigenvalues of a 3 by 3 non-Hermitian Hamiltonian
    Ergun, Ebru
    Bairamov, Elgiz
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 49 (02) : 609 - 617
  • [27] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [28] On the eigenvalues of a 3 by 3 non-Hermitian Hamiltonian
    Ebru Ergun
    Elgiz Bairamov
    Journal of Mathematical Chemistry, 2011, 49 : 609 - 617
  • [29] Non-Hermitian Hamiltonians with real and complex eigenvalues: An sl(2,C) approach
    Bagchi, B
    Quesne, C
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 589 - 592
  • [30] Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework
    Bagchi, B
    Quesne, C
    PHYSICS LETTERS A, 2002, 300 (01) : 18 - 26