REFINED PERTURBATION BOUNDS FOR EIGENVALUES OF HERMITIAN AND NON-HERMITIAN MATRICES

被引:40
|
作者
Ipsen, I. C. F. [1 ]
Nadler, B. [2 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
关键词
eigenvalues; Hermitian matrix; eigenvalue gap; perturbation bounds; non-Hermitian perturbations; principal components; numerical continuation; RANK-ONE MODIFICATION; NON-LINEAR EQUATIONS; CONTINUATION; EIGENPROBLEM; INEQUALITY;
D O I
10.1137/070682745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present eigenvalue bounds for perturbations of Hermitian matrices and express the change in eigenvalues in terms of a projection of the perturbation onto a particular eigenspace, rather than in terms of the full perturbation. The perturbations we consider are Hermitian of rank one, and Hermitian or non-Hermitian with norm smaller than the spectral gap of a specific eigenvalue. Applications include principal component analysis under a spiked covariance model, and pseudo-arclength continuation methods for the solution of nonlinear systems.
引用
收藏
页码:40 / 53
页数:14
相关论文
共 50 条
  • [1] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [2] Eigenvalues of large chiral non-Hermitian random matrices
    Chang, Shuhua
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [3] COMPUTING COMPLEX EIGENVALUES OF LARGE NON-HERMITIAN MATRICES
    KERNER, W
    LERBINGER, K
    STEUERWALD, J
    COMPUTER PHYSICS COMMUNICATIONS, 1985, 38 (01) : 27 - 37
  • [4] Perturbation of multiple eigenvalues of Hermitian matrices
    Li, Ren-Cang
    Nakatsukasa, Yuji
    Truhar, Ninoslav
    Wang, Wei-guo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (01) : 202 - 213
  • [5] On the Eigenvalues of a Non-Hermitian Hamiltonian
    Ergun, Ebru
    DYNAMICAL SYSTEMS AND METHODS, 2012, : 245 - +
  • [6] Singular values and eigenvalues of non-Hermitian block Toeplitz matrices
    Tilli, Paolo
    Calcolo, 1996, 33 (01) : 59 - 69
  • [7] Distribution of complex eigenvalues for symplectic ensembles of non-Hermitian matrices
    Kolesnikov, A.V.
    Efetov, K.B.
    Waves Random Media, 1999, 9 (02): : 71 - 82
  • [8] RESEARCH ON METHODS FOR FINDING EIGENVALUES AND EIGENVECTORS OF NON-HERMITIAN MATRICES
    CAUSEY, RL
    FRANK, WL
    OSBORN, EE
    TARNOVE, I
    YOUNG, D
    JOURNAL OF THE ACM, 1958, 5 (01) : 105 - 105
  • [9] Singular values and eigenvalues of non-Hermitian block Toeplitz matrices
    Tilli, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 272 : 59 - 89
  • [10] METHOD FOR DETERMINATION OF EIGENVALUES AND EIGENVECTORS OF SYMMETRIC NON-HERMITIAN MATRICES
    RUFFINATTI, JG
    COMPUTING, 1975, 15 (03) : 275 - 286