Distribution of complex eigenvalues for symplectic ensembles of non-Hermitian matrices

被引:15
|
作者
Kolesnikov, AV [1 ]
Efetov, KB [1 ]
机构
[1] Ruhr Univ Bochum, Fak Phys & Astron, D-4630 Bochum, Germany
来源
WAVES IN RANDOM MEDIA | 1999年 / 9卷 / 02期
关键词
D O I
10.1088/0959-7174/9/2/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A symplectic ensemble of disordered non-Hermitian Hamiltonians is studied. Starting from a model with an imaginary magnetic field, we derive a proper supermatrix sigma-model. The zero-dimensional version of this model corresponds to a symplectic ensemble of weakly non-Hermitian matrices. We derive analytically an explicit expression for the density of complex eigenvalues. This function proves to differ qualitatively from those known for the unitary and orthogonal ensembles. In contrast to these cases, a depletion of the eigenvalues occurs near the real axis. The result about the depletion is in agreement with a previous numerical study performed for QCD models.
引用
收藏
页码:71 / 82
页数:12
相关论文
共 50 条
  • [31] Pseudo-Hermitian β-Ensembles with Complex Eigenvalues
    Marinello, Gabriel
    Pato, Mauricio Porto
    NON-HERMITIAN HAMILTONIANS IN QUANTUM PHYSICS, 2016, 184 : 305 - 318
  • [32] Eigenvalues of non-Hermitian random matrices and Brown measure of non-normal operators: Hermitian reduction and linearization method
    Belinschi, Serban T.
    Sniady, Piotr
    Speicher, Roland
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 537 : 48 - 83
  • [33] Outlier eigenvalues for non-Hermitian polynomials in independent i.i.d. matrices and deterministic matrices
    Belinschi, Serban
    Bordenave, Charles
    Capitaine, Mireille
    Cebron, Guillaume
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [34] On the eigenvalues of a 3 by 3 non-Hermitian Hamiltonian
    Ergun, Ebru
    Bairamov, Elgiz
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 49 (02) : 609 - 617
  • [35] CLASSES OF NON-HERMITIAN OPERATORS WITH REAL EIGENVALUES
    Bebiano, Natalia
    da Providencia, Joao
    da Providencia, Joao P.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 21 : 98 - 109
  • [36] On the eigenvalues of a 3 by 3 non-Hermitian Hamiltonian
    Ebru Ergun
    Elgiz Bairamov
    Journal of Mathematical Chemistry, 2011, 49 : 609 - 617
  • [37] REAL EIGENVALUES IN THE NON-HERMITIAN ANDERSON MODEL
    Goldsheid, Ilya
    Sodin, Sasha
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (05): : 3075 - 3093
  • [38] Invertibility of sparse non-Hermitian matrices
    Basak, Anirban
    Rudelson, Mark
    ADVANCES IN MATHEMATICS, 2017, 310 : 426 - 483
  • [39] ON WORDS OF NON-HERMITIAN RANDOM MATRICES
    Dubach, Guillaume
    Peled, Yuval
    ANNALS OF PROBABILITY, 2021, 49 (04): : 1886 - 1916
  • [40] Non-Hermitian Hamiltonians with real and complex eigenvalues: An sl(2,C) approach
    Bagchi, B
    Quesne, C
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 589 - 592