Eigenvector correlations in non-Hermitian random matrix ensembles

被引:0
|
作者
Mehlig, B. [1 ]
Chalker, J.T. [1 ]
机构
[1] Univ of Oxford, Oxford, United Kingdom
来源
Annalen der Physik (Leipzig) | 1998年 / 7卷 / 5-6期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
下载
收藏
页码:427 / 436
相关论文
共 50 条
  • [1] Eigenvector correlations in non-Hermitian random matrix ensembles
    Mehlig, B
    Chalker, JT
    ANNALEN DER PHYSIK, 1998, 7 (5-6) : 427 - 436
  • [2] Eigenvector statistics in non-Hermitian random matrix ensembles
    Chalker, JT
    Mehlig, B
    PHYSICAL REVIEW LETTERS, 1998, 81 (16) : 3367 - 3370
  • [3] NON-HERMITIAN EXTENSIONS OF WISHART RANDOM MATRIX ENSEMBLES
    Akemann, Gernot
    ACTA PHYSICA POLONICA B, 2011, 42 (05): : 901 - 921
  • [4] Spectral statistics of non-Hermitian random matrix ensembles
    Chen, Ryan C.
    Kim, Yujin H.
    Lichtman, Jared D.
    Miller, Steven J.
    Sweitzer, Shannon
    Winsor, Eric
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2019, 8 (02)
  • [5] Gaussian fluctuations for non-Hermitian random matrix ensembles
    Rider, B.
    Silverstein, Jack W.
    ANNALS OF PROBABILITY, 2006, 34 (06): : 2118 - 2143
  • [6] Large scale correlations in normal non-Hermitian matrix ensembles
    Wiegmann, P
    Zabrodin, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3411 - 3424
  • [7] Edge scaling limits for a family of non-Hermitian random matrix ensembles
    Bender, Martin
    PROBABILITY THEORY AND RELATED FIELDS, 2010, 147 (1-2) : 241 - 271
  • [8] Correlations of eigenvectors for non-Hermitian random-matrix models
    Janik, RA
    Norenberg, W
    Nowak, MA
    Papp, G
    Zahed, I
    PHYSICAL REVIEW E, 1999, 60 (03): : 2699 - 2705
  • [9] Edge scaling limits for a family of non-Hermitian random matrix ensembles
    Martin Bender
    Probability Theory and Related Fields, 2010, 147 : 241 - 271
  • [10] Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles
    Mehlig, B
    Chalker, JT
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 3233 - 3256