Characteristic Polynomials of Sparse Non-Hermitian Random MatricesCharacteristic Polynomials of Sparse Non-Hermitian Random MatricesI. Afanasiev, T. Shcherbina

被引:0
|
作者
Ievgenii Afanasiev [1 ]
Tatyana Shcherbina [2 ]
机构
[1] B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine,Department of Mathematics
[2] University of Wisconsin,undefined
关键词
D O I
10.1007/s10955-024-03379-5
中图分类号
学科分类号
摘要
We consider the asymptotic local behavior of the second correlation functions of the characteristic polynomials of sparse non-Hermitian random matrices Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document} whose entries have the form xjk=djkwjk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{jk}=d_{jk}w_{jk}$$\end{document} with iid complex standard Gaussian wjk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{jk}$$\end{document} and normalised iid Bernoulli(p) djk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{jk}$$\end{document}. It is shown that, as p→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow \infty $$\end{document}, the local asymptotic behavior of the second correlation function of characteristic polynomials near z0∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_0\in \mathbb {C}$$\end{document} coincides with those for Ginibre ensemble: it converges to a determinant with Ginibre kernel in the bulk |z0|<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z_0|<1$$\end{document}, and it is factorized if |z0|>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z_0|>1$$\end{document}. For the finite p>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>0$$\end{document}, the behavior is different and exhibits the transition between different regimes depending on values of p and |z0|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z_0|^2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians
    Ndayiragije, F.
    Van Assche, W.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (50)
  • [22] Non-Hermitian oscillator Hamiltonians and multiple Charlier polynomials
    Miki, Hiroshi
    Vinet, Luc
    Zhedanov, Alexei
    PHYSICS LETTERS A, 2011, 376 (02) : 65 - 69
  • [23] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [24] Towards non-Hermitian random Levy matrices
    Gudowska-Nowak, Ewa
    Jarosz, Andrzej
    Nowak, Maciej A.
    Papp, Gabor
    ACTA PHYSICA POLONICA B, 2007, 38 (13): : 4089 - 4104
  • [25] ON THE RIGHTMOST EIGENVALUE OF NON-HERMITIAN RANDOM MATRICES
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    Xu, Yuanyuan
    ANNALS OF PROBABILITY, 2023, 51 (06): : 2192 - 2242
  • [26] Functional CLT for non-Hermitian random matrices
    Erdos, Laszlo
    Ji, Hong Chang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 2083 - 2105
  • [27] Local Laws for Non-Hermitian Random Matrices
    Goetze, F.
    Naumov, A. A.
    Tikhomirov, A. N.
    DOKLADY MATHEMATICS, 2017, 96 (03) : 558 - 560
  • [28] Products of independent non-Hermitian random matrices
    O'Rourke, Sean
    Soshnikov, Alexander
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 2219 - 2245
  • [29] On delocalization of eigenvectors of random non-Hermitian matrices
    Lytova, Anna
    Tikhomirov, Konstantin
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (1-2) : 465 - 524
  • [30] Duality in non-Hermitian random matrix theory
    Liu, Dang-Zheng
    Zhang, Lu
    NUCLEAR PHYSICS B, 2024, 1004