Extremal Graphs for the Union of Two Vertex-Disjoint Cliques

被引:0
|
作者
Zhidan Luo [1 ]
机构
[1] Hainan University,School of Mathematics and Statistics
关键词
Turán number; Cliques; Extremal graphs; 05C35; 11N30;
D O I
10.1007/s00373-025-02914-9
中图分类号
学科分类号
摘要
A graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} contains no copy of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} as a subgraph. The Turán number of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}, ex(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, H)$$\end{document}, is the maximum number of edges over all H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free graphs on n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices. Let EX(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{EX}(n, H)$$\end{document} be the collection of all H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free graphs on n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices with ex(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, H)$$\end{document} edges. Recently, Chen et al. determined the value of ex(n,2Kp+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, 2K_{p+ 1})$$\end{document}. Zhang and also Zhang and Yin determined the value of ex(n,3Kp+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, 3K_{p+ 1})$$\end{document}. Hu determined the value of ex(n,Kp+1∪Kq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, K_{p+ 1}\cup K_{q})$$\end{document} for all p≥q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge q$$\end{document}. In this paper, we characterize EX(n,Kp+1∪Kq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{EX}(n, K_{p+ 1}\cup K_{q})$$\end{document} for all p≥q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge q$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Vertex-disjoint rainbow cycles in edge-colored graphs
    Li, Luyi
    Li, Xueliang
    DISCRETE MATHEMATICS, 2022, 345 (07)
  • [32] Minimal spectrum-sums of bipartite graphs with exactly two vertex-disjoint cycles
    Wei, Fuyi
    Zhou, Bo
    Trinajstic, Nenad
    CROATICA CHEMICA ACTA, 2008, 81 (02) : 363 - 367
  • [33] Vertex-disjoint K1,t's in graphs
    Fujita, S
    ARS COMBINATORIA, 2002, 64 : 211 - 223
  • [34] Vertex-disjoint rainbow triangles in edge-colored graphs
    Hu, Jie
    Li, Hao
    Yang, Donglei
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [35] Constructing vertex-disjoint paths in (n,k)-star graphs
    Lin, Tsung-Chi
    Duh, Dyi-Rong
    INFORMATION SCIENCES, 2008, 178 (03) : 788 - 801
  • [36] A note on vertex-disjoint cycles
    Verstraëte, J
    COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (01): : 97 - 102
  • [37] Vertex-Disjoint Quadrilaterals in Multigraphs
    Yunshu Gao
    Qingsong Zou
    Liyan Ma
    Graphs and Combinatorics, 2017, 33 : 901 - 912
  • [38] Vertex-Disjoint Quadrilaterals in Multigraphs
    Gao, Yunshu
    Zou, Qingsong
    Ma, Liyan
    GRAPHS AND COMBINATORICS, 2017, 33 (04) : 901 - 912
  • [39] The vertex-disjoint triangles problem
    Guruswami, V
    Rangan, CP
    Chang, MS
    Chang, GJ
    Wong, CK
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 1998, 1517 : 26 - 37
  • [40] Spanning Cyclic Subdivisions of Vertex-Disjoint Cycles and Chorded Cycles in Graphs
    Qiao, Shengning
    Zhang, Shenggui
    GRAPHS AND COMBINATORICS, 2012, 28 (02) : 277 - 285