Extremal Graphs for the Union of Two Vertex-Disjoint Cliques

被引:0
|
作者
Zhidan Luo [1 ]
机构
[1] Hainan University,School of Mathematics and Statistics
关键词
Turán number; Cliques; Extremal graphs; 05C35; 11N30;
D O I
10.1007/s00373-025-02914-9
中图分类号
学科分类号
摘要
A graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} contains no copy of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} as a subgraph. The Turán number of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}, ex(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, H)$$\end{document}, is the maximum number of edges over all H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free graphs on n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices. Let EX(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{EX}(n, H)$$\end{document} be the collection of all H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free graphs on n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices with ex(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, H)$$\end{document} edges. Recently, Chen et al. determined the value of ex(n,2Kp+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, 2K_{p+ 1})$$\end{document}. Zhang and also Zhang and Yin determined the value of ex(n,3Kp+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, 3K_{p+ 1})$$\end{document}. Hu determined the value of ex(n,Kp+1∪Kq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, K_{p+ 1}\cup K_{q})$$\end{document} for all p≥q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge q$$\end{document}. In this paper, we characterize EX(n,Kp+1∪Kq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{EX}(n, K_{p+ 1}\cup K_{q})$$\end{document} for all p≥q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge q$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Minimum degree conditions for vertex-disjoint even cycles in large graphs
    Chiba, Shuya
    Fujita, Shinya
    Kawarabayashi, Ken-ichi
    Sakuma, Tadashi
    ADVANCES IN APPLIED MATHEMATICS, 2014, 54 : 105 - 120
  • [42] Polynomial Time Algorithm for Constructing Vertex-Disjoint Paths in Transposition Graphs
    Fujita, Satoshi
    NETWORKS, 2010, 56 (02) : 149 - 157
  • [43] Spanning Cyclic Subdivisions of Vertex-Disjoint Cycles and Chorded Cycles in Graphs
    Shengning Qiao
    Shenggui Zhang
    Graphs and Combinatorics, 2012, 28 : 277 - 285
  • [44] Partitioning a graph into vertex-disjoint paths
    Li, J
    Steiner, G
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2005, 42 (03) : 277 - 294
  • [45] Independence number and vertex-disjoint cycles
    Egawa, Yoshimi
    Enomoto, Hikoe
    Jendrol, Stanislav
    Ota, Katsuhiro
    Schiermeyer, Ingo
    DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1493 - 1498
  • [46] A CONJECTURE OF VERSTRAETE ON VERTEX-DISJOINT CYCLES
    Gao, Jun
    Ma, Jie
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (02) : 1290 - 1301
  • [47] Vertex-disjoint cycles of the same length
    Egawa, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 66 (02) : 168 - 200
  • [48] Vertex-Disjoint Paths in BCDC Networks
    Wang, Xi
    Fan, Jianxi
    PAAP 2021: 2021 12TH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING, 2021, : 88 - 91
  • [49] On the construction of all shortest vertex-disjoint paths in Cayley graphs of abelian groups
    Lai, Cheng-Nan
    THEORETICAL COMPUTER SCIENCE, 2015, 571 : 10 - 20
  • [50] Vertex-disjoint cycles in regular tournaments
    Lichiardopol, Nicolas
    DISCRETE MATHEMATICS, 2012, 312 (12-13) : 1927 - 1930