Extremal Graphs for the Union of Two Vertex-Disjoint Cliques

被引:0
|
作者
Zhidan Luo [1 ]
机构
[1] Hainan University,School of Mathematics and Statistics
关键词
Turán number; Cliques; Extremal graphs; 05C35; 11N30;
D O I
10.1007/s00373-025-02914-9
中图分类号
学科分类号
摘要
A graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} contains no copy of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} as a subgraph. The Turán number of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}, ex(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, H)$$\end{document}, is the maximum number of edges over all H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free graphs on n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices. Let EX(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{EX}(n, H)$$\end{document} be the collection of all H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free graphs on n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices with ex(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, H)$$\end{document} edges. Recently, Chen et al. determined the value of ex(n,2Kp+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, 2K_{p+ 1})$$\end{document}. Zhang and also Zhang and Yin determined the value of ex(n,3Kp+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, 3K_{p+ 1})$$\end{document}. Hu determined the value of ex(n,Kp+1∪Kq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, K_{p+ 1}\cup K_{q})$$\end{document} for all p≥q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge q$$\end{document}. In this paper, we characterize EX(n,Kp+1∪Kq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{EX}(n, K_{p+ 1}\cup K_{q})$$\end{document} for all p≥q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge q$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [11] Spectral extremal graphs for disjoint cliques
    Ni, Zhenyu
    Wang, Jing
    Kang, Liying
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (01): : 1 - 20
  • [12] On vertex-disjoint paths in regular graphs
    Han, Jie
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [13] Vertex-disjoint paths in transposition graphs
    Fujita, Satoshi
    Proceedings of the 18th IASTED International Conference on Parallel and Distributed Computing and Systems, 2006, : 490 - 494
  • [14] VERTEX-DISJOINT QUADRILATERALS IN BIPARTITE GRAPHS
    YAN Jin LIU Guizhen (School of Mathematics & Systems Science
    Journal of Systems Science & Complexity, 2004, (04) : 532 - 537
  • [15] Graphs without two vertex-disjoint S-cycles
    Kang, Minjeong
    Kwon, O-joung
    Lee, Myounghwan
    DISCRETE MATHEMATICS, 2020, 343 (10)
  • [16] Reconfiguration of vertex-disjoint shortest paths on graphs
    Saito, Rin
    Eto, Hiroshi
    Ito, Takehiro
    Uehara, Ryuhei
    Journal of Graph Algorithms and Applications, 2024, 28 (03) : 87 - 101
  • [17] On Vertex-Disjoint Triangles in Tripartite Graphs and Multigraphs
    Qingsong Zou
    Jiawang Li
    Zizheng Ji
    Graphs and Combinatorics, 2020, 36 : 1355 - 1361
  • [18] On Vertex-Disjoint Triangles in Tripartite Graphs and Multigraphs
    Zou, Qingsong
    Li, Jiawang
    Ji, Zizheng
    GRAPHS AND COMBINATORICS, 2020, 36 (05) : 1355 - 1361
  • [19] The vertex-disjoint Menger problem in planar graphs
    RipphausenLipa, H
    Wagner, D
    Weihe, K
    SIAM JOURNAL ON COMPUTING, 1997, 26 (02) : 331 - 349
  • [20] Vertex-disjoint paths in Cayley color graphs
    Kulasinghe, P
    Bettayeb, S
    COMPUTERS AND ARTIFICIAL INTELLIGENCE, 1997, 16 (06): : 583 - 597