VERTEX-DISJOINT QUADRILATERALS IN BIPARTITE GRAPHS

被引:0
|
作者
YAN Jin LIU Guizhen (School of Mathematics & Systems Science
机构
基金
中国国家自然科学基金;
关键词
Graphs; bipartite graphs; quadrilaterals; cycles;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
H. Wang considered the minimum degrees condition that G has large vertex-disjoint cycles in bipartite graphs. Motivated by this, we consider the small vertex-disjoint cycles in bipartite graphs in this paper. We prove the following result: Let m > 3, n > 2 and k >1 be three integers. Let G = (V1,V2;E) be a bipartite graph with | V1| = | V2| =n > 2k+1. If the minimum degreefor any cycle C of G with length 2m, then G contains k vertex-disjoint cycles of length 4. Moreover, the degrees condition is sharp.
引用
收藏
页码:532 / 537
页数:6
相关论文
共 50 条
  • [1] Vertex-disjoint quadrilaterals in graphs
    Wang, H
    DISCRETE MATHEMATICS, 2004, 288 (1-3) : 149 - 166
  • [2] Vertex-disjoint quadrilaterals containing specified edges in a bipartite graph
    Yan J.
    Liu G.
    Journal of Applied Mathematics and Computing, 2008, 27 (1-2) : 23 - 31
  • [3] Vertex-Disjoint Quadrilaterals in Multigraphs
    Yunshu Gao
    Qingsong Zou
    Liyan Ma
    Graphs and Combinatorics, 2017, 33 : 901 - 912
  • [4] Vertex-Disjoint Quadrilaterals in Multigraphs
    Gao, Yunshu
    Zou, Qingsong
    Ma, Liyan
    GRAPHS AND COMBINATORICS, 2017, 33 (04) : 901 - 912
  • [5] Vertex-disjoint double chorded cycles in bipartite graphs
    Gao, Yunshu
    Lin, Xiaoyao
    Wang, Hong
    DISCRETE MATHEMATICS, 2019, 342 (09) : 2482 - 2492
  • [6] Vertex-disjoint cycles in bipartite tournaments
    Bai, Yandong
    Li, Binlong
    Li, Hao
    DISCRETE MATHEMATICS, 2015, 338 (08) : 1307 - 1309
  • [7] Vertex-disjoint paths in graphs
    Egawa, Y
    Ota, K
    ARS COMBINATORIA, 2001, 61 : 23 - 31
  • [8] Vertex-disjoint claws in graphs
    Egawa, Y
    Ota, K
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 225 - 246
  • [9] On Vertex-Disjoint Complete Bipartite Subgraphs in a Bipartite Graph
    Hong Wang
    Graphs and Combinatorics, 1999, 15 : 353 - 364
  • [10] On vertex-disjoint complete bipartite subgraphs in a bipartite graph
    Wang, H
    GRAPHS AND COMBINATORICS, 1999, 15 (03) : 353 - 364