Extremal Graphs for the Union of Two Vertex-Disjoint Cliques

被引:0
|
作者
Zhidan Luo [1 ]
机构
[1] Hainan University,School of Mathematics and Statistics
关键词
Turán number; Cliques; Extremal graphs; 05C35; 11N30;
D O I
10.1007/s00373-025-02914-9
中图分类号
学科分类号
摘要
A graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} contains no copy of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} as a subgraph. The Turán number of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}, ex(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, H)$$\end{document}, is the maximum number of edges over all H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free graphs on n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices. Let EX(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{EX}(n, H)$$\end{document} be the collection of all H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free graphs on n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices with ex(n,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, H)$$\end{document} edges. Recently, Chen et al. determined the value of ex(n,2Kp+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, 2K_{p+ 1})$$\end{document}. Zhang and also Zhang and Yin determined the value of ex(n,3Kp+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, 3K_{p+ 1})$$\end{document}. Hu determined the value of ex(n,Kp+1∪Kq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ex}(n, K_{p+ 1}\cup K_{q})$$\end{document} for all p≥q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge q$$\end{document}. In this paper, we characterize EX(n,Kp+1∪Kq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{EX}(n, K_{p+ 1}\cup K_{q})$$\end{document} for all p≥q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge q$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Shortest vertex-disjoint two-face paths in planar graphs
    de Verdiere, Eric Colin
    Schrijver, Alexander
    STACS 2008: PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 2008, : 181 - +
  • [22] Shortest Vertex-Disjoint Two-Face Paths in Planar Graphs
    de Verdiere, Eric Colin
    Schrijver, Alexander
    ACM TRANSACTIONS ON ALGORITHMS, 2011, 7 (02)
  • [23] Two vertex-disjoint cycles in a graph
    Wang, H
    GRAPHS AND COMBINATORICS, 1995, 11 (04) : 389 - 396
  • [24] Turan problems for vertex-disjoint cliques in multi-partite hypergraphs
    Liu, Erica L. L.
    Wang, Jian
    DISCRETE MATHEMATICS, 2020, 343 (10)
  • [25] Vertex-disjoint double chorded cycles in bipartite graphs
    Gao, Yunshu
    Lin, Xiaoyao
    Wang, Hong
    DISCRETE MATHEMATICS, 2019, 342 (09) : 2482 - 2492
  • [26] Vertex-disjoint copies of K-4(-) in graphs
    Fujita, Shinya
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 31 : 189 - 200
  • [27] On independent triples and vertex-disjoint chorded cycles in graphs
    Gould, Ronald J.
    Hirohata, Kazuhide
    Rorabaugh, Ariel Keller
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2020, 77 (PT 3): : 355 - 372
  • [28] Computing Vertex-Disjoint Paths in Large Graphs Using MAOs
    Preisser, Johanna E.
    Schmidt, Jens M.
    ALGORITHMICA, 2020, 82 (01) : 146 - 162
  • [29] VERTEX-DISJOINT PATHS AND EDGE-DISJOINT BRANCHINGS IN DIRECTED-GRAPHS
    WHITTY, RW
    JOURNAL OF GRAPH THEORY, 1987, 11 (03) : 349 - 358
  • [30] Computing Vertex-Disjoint Paths in Large Graphs Using MAOs
    Johanna E. Preißer
    Jens M. Schmidt
    Algorithmica, 2020, 82 : 146 - 162